• 제목/요약/키워드: Low Reynolds number

검색결과 537건 처리시간 0.026초

패러글라이딩 헬멧의 항력 감소에 관한 실험적 연구 (Experimental study on the drag reduction of a helmet for paragliding)

  • 황종빈;박정목;송진석;김주하
    • 한국가시화정보학회지
    • /
    • 제19권3호
    • /
    • pp.46-53
    • /
    • 2021
  • In the present study, wind tunnel experiments were performed to reduce the drag of a paragliding helmet in the range of Reynolds numbers from 46,000 to 155,000. The drag force of the helmet model with dimples and deflectors installed was measured by varying the dimple depth and the slant angle of the deflector. The dimples were effective in reducing the drag at low Reynolds numbers, but no significant drag reduction was found in the Reynolds number range in which an actual paraglider flight takes place. On the other hand, the deflector installed tangentially to the side outline of the helmet showed an average drag reduction of 7% in the flight Reynolds number range of real paragliding. This was because the deflector shrunk the size of the wake region and moved the wake region downstream of the deflector.

허브와 중앙스팬 사이의 회전익 후류 3차원 난류유동해석에 관한 연구 (A study on the three dimensional turbulent flow analysis of wake flow behind rotating blade row between hub and midspan)

  • 노수혁;조강래
    • 대한기계학회논문집B
    • /
    • 제21권7호
    • /
    • pp.911-918
    • /
    • 1997
  • The turbulent viscous wake flows behind a single airfoil, two-dimensional stationary blade row and three-dimensional rotating blade row were calculated, and the numerical results were compared with experimental ones. The numerical technique was based on the SIMPLE algorithm using three turbulent closure models, standard k-.epsilon. model(WFM), low Reynolds number k-.epsilon. model(LRN) and Reynolds stress model (RSM). In the case of a single airfoil, WFM, LRN and RSM presented fairly good velocity distributions in the wake compared with experimental data. In the case of the stationary blade row, LRN and RSM presented better results than WFM for wake velocity distribution, and especially LRN showed best results among these three turbulent models. In the case of the rotating blade row, WFM and LRN showed fairly good agreement with experimental data of the three-dimensional velocity component distributions in the range from hub to mid span region. LRN was also superior to WFM in accuracy of prediction for the wake velocity distribution as same with the cases of a airfoil and the stationary blade row.

다양한 부채꼴 핀휜 형상의 열성능 평가 (Evaluation of Thermal Performances of Various Fan-Shaped Pin-Fin Geometries)

  • 문미애;김광용
    • 대한기계학회논문집B
    • /
    • 제38권7호
    • /
    • pp.557-570
    • /
    • 2014
  • 본 연구에서는 삼차원 RANS 방정식을 이용하여 냉각 유로 내에 부착하는 새로운 핀휜의 다양한 부채꼴 형상에 대해 열전달, 압력강하, 열성능을 평가하였다. 레이놀즈수가 5,000부터 100,000인 경우에 대하여 수치해석을 수행하였으며, 난류모델로는 Low-Re SST 모델을 사용하였다. 수치해석의 정당성을 확보하기 위하여 실험과 동일한 조건에서 면적 평균 누셀트수에 대한 실험값과 계산값을 비교하였다. 앞전 각도와 뒷전 각도를 매개변수로 하여 세 종류의 부채꼴 핀휜의 형상 변화에 따른 열성능을 평가하였다.

Numerical Investigation on Flow Pattern over Backward-Facing Step for Various Step Angles and Reynolds numbers

  • Lee, Jeong Hu;Nguyen, Van Thinh
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.60-60
    • /
    • 2021
  • Investigating Backward-Facing Step(BFS) flow is important in that it is a representative case for separation flows in various engineering flow systems. There have been a wide range of experimental, theoretical, and numerical studies to investigate the flow characteristics over BFS, such as flow separation, reattachment length and recirculation zone. However, most of such previous studies were concentrated only on the perpendicular step angle. In this study, several numerical investigations on the flow pattern over BFS with various step angles (10° ~ 90°) and expansion ratios (1.48, 2 and 3.27) under different Reynolds numbers (5000 ~ 64000) were carried out, mainly focused on the reattachment length. The numerical simulations were performed using an open source 3D CFD software, OpenFOAM, in which the velocity profiles and turbulence intensities are calculated by RANS (Reynolds Averaged Navier-Stokes equation) and 3D LES (Large Eddy Simulation) turbulence models. Overall, it shows a good agreement between simulations and the experimental data by Ruck and Makiola (1993). In comparison with the results obtained from RANS and 3D LES, it was shown that 3D LES model can capture much better and more details on the velocity profiles, turbulence intensities, and reattachment length behind the step for relatively low Reynolds number(Re < 11000) cases. However, the simulation results by both of RANS and 3D LES showed very good agreement with the experimental data for the high Reynolds number cases(Re > 11000). For Re > 11000, the reattachment length is no longer dependent on the Reynolds number, and it tends to be nearly constant for the step angles larger than 30°.) Based on the calibrated and validated numerical simulations, several additional numerical simulations were also conducted with higher Reynolds number and another expansion ratio which were not considered in the experiments by Ruck and Makiola (1993).

  • PDF

미소진동교반기의 혼합특성에 대한 수치적 연구 (Numerical Study for Mixing Characteristics of an Oscillating Micro-stirrer)

  • 김용대;맹주성
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.309-312
    • /
    • 2006
  • Effective mixing is an important problem in microfluidics for chemical and biomechanical applications. In this study, the influences of the Reynolds number and the oscillating frequency on mixing characteristics of micro-stirrer are studied in a microchannel with single stirrer. The influence of fluid inertial effects in an active mixer is first discussed. It is found that the stirring effects by stirrer oscillation are promptly attenuated at low Reynolds number, which makes greatly difficult the rapid mixing. As the inertial effects are increased, the chaotic advection is generated and then developed. The mixing phase is finally developed some mushroom shaped structure. And the mixing efficiency is also studied as a function of the oscillating frequency. We found that the mixing efficiency does not always increase with higher oscillating frequency of stirrer. Consequently, we found the functional relation between the optimal frequency of a stirrer and the Reynolds number.

  • PDF

PREDICTION OF THERMAL STRATIFICATION IN A U-BENT PIPE: A URANS VALIDATION

  • Pellegrini, M.;Endo, H.;Ninokata, H.
    • Nuclear Engineering and Technology
    • /
    • 제44권1호
    • /
    • pp.33-42
    • /
    • 2012
  • In the present study, CFD is employed to investigate phenomena occurring during a process of thermal stratification in U-bent pipes at transitional Reynolds number. URANS evaluation had been chosen for its low computational costs during transient analysis and for the evaluation of modeling performance in these conditions. Application of CFD at transitional Reynolds number and buoyancy driven flows indeed contains deeper uncertainties in relation to the range of applicability for hydrodynamic and thermal models. The methodology applied in the work points out, through validations with the basic problems constituting the complex stratified phenomenon, the applicability of the current turbulence modeling. Accurate predictions have been found in relation to transitional Reynolds number in bent pipes and region of stability induced by the gravitational field. On the other hand the defects introduced in the unstable region of the U bent pipe, are discussed in relation to the adopted modeling.

수평채널 내 고 점성유체의 볼텍스 유동에 관한 3차원 수치해석(2) (Three-Dimensional Numerical Study on the Vortex Flow in a Horizontal Channels with High Viscous Fluid(2))

  • 박일용;김정수;배대석
    • 동력기계공학회지
    • /
    • 제19권4호
    • /
    • pp.36-42
    • /
    • 2015
  • TMixed convective flow in a bottom heated and top cooled rectangular channel can be significantly affected by the channel aspect ratio, Prandtl number, Reynolds number, Rayleigh number and angle of inclination. In such a mixed convection, the flow pattern plays an important role in various technological processes. In this study, a numerical investigation is carried out to explore mixed convection in a three-dimensional rectangular channel with bottom heated and top cooled uniformly. The three-dimensional governing equations are discretized using the finite volume method. In the range of low Reynolds number($0{\leq}Re{\leq}9.6{\times}10^{-2}$), the effects of the aspect ratio($2{\leq}AR{\leq}12$) and Gr/Re are presented and discussed. The longitudinal roll number in the channel is increased with increasing aspect ratio, and the roll number induced, regardless of the aspect ratio number, is even in the range of aspect ratios between 2 and 12, New vortex flow structure containing inclined longitudinal rolls is found, which is affected by aspect ratio and Reynolds number. The ratio Gr/Re is used to check the relative magnitudes of forced and natural convection in the mixed convective flow of high viscous fluid.

하이브리드 로켓 연소에서 연료액적의 발생과 저주파수 연소불안정 (Fuel Droplet Entrainment and Low Frequency Instability in Hybrid Rocket Combustion)

  • 김진아;이창진
    • 한국항공우주학회지
    • /
    • 제49권7호
    • /
    • pp.573-580
    • /
    • 2021
  • 파라핀 왁스는 높은 후퇴율 때문에 하이브리드 로켓의 연료로 많은 각광을 받고 있다. 하지만 파라핀 연료의 연소에서도 비정상적인 저주파수 연소압력 진동이 관찰되고 있는데, 이는 연료 표면에 형성된 액체층과 액적의 유입과 관련이 있는 것으로 추론된다. 본 연구는 액적에 의한 추가적 연소와 저주파수 연소불안정 발생과의 관계를 분석하였다. 한편, 액적의 발생은 관성력과 액체의 표면장력의 비로 정의되는 We수(Weber Number)와 액체층의 Re수(Reynolds Number)에 따라 변화하는 것으로 알려져 있다. 따라서 일차적으로 실험실 규모의 로켓을 사용하여 We수에 따른 연소불안정의 발생여부를 관찰하였다. We수의 조절은 산화제 유량 변화를 통한 관성력의 변화와 LDPE(Low Density Polyethylene) 첨가에 의한 표면장력의 변화를 통해 시도하였다. 저주파수의 연소불안정의 발생은 특정한 We수 이상에서만 관찰되었고 임계 We수가 존재하는 것을 확인하였다.

Flow of a low concentration polyacrylamide fluid solution in a channel with a flat plate obstruction at the entry

  • Kabir, M.A.;Khan, M.M.K.;Rasul, M.G.
    • Korea-Australia Rheology Journal
    • /
    • 제16권2호
    • /
    • pp.63-73
    • /
    • 2004
  • Flow in a channel with an obstruction at the entry can be reverse, stagnant or forward depending on the position of the obstruction. These flow phenomena have potential applications in the control of energy and various flows in process engineering. Parameters that affect this flow inside and around the test channel are the gap (g) between the obstruction geometry and the test channel, the Reynolds number (Re) and the length (L) of the test channel. The influence of these parameters on the flow behavior was investigated using a flat plate obstruction at the entry of the channel. A low concentration polyacrylamide solution (0.018% by weight) showing a powerlaw fluid behavior was used as the fluid in this investigation. The flow phenomena were investigated by the velocity measurement and the flow visualization and their results were compared with numerical simulation. These results of low concentration polyacrylamide solution are also compared with the results of water published elsewhere (Kabir et al., 2003). The maximum reverse flow inside the test channel observed was 20% - 30% of the outside test channel velocity at a g/w (gap to width) ratio of 1 for Reynolds numbers of 1000 to 3500. The influence of the test channel length (L) and the Reynolds number (Re) on the velocity ratio ($V_i$/$V_o$: inside velocity/outside velocity in the test channel) are also presented and discussed here.

회귀분석을 이용한 저(低)레이놀즈수 익형 공력성능 연구 (Study on the Aerodynamic Performance of Low Reynolds Airfoils using a Regression Analysis)

  • 진원진
    • 항공우주시스템공학회지
    • /
    • 제10권3호
    • /
    • pp.9-14
    • /
    • 2016
  • Using a multiple regression analysis, a total of 78 low-Reynolds-number airfoils are examined in this paper to clarify the systematic relationships between the geometrical parameters of the airfoils and experimentally-determined aerodynamic coefficients. The results show that the effects of the maximum camber and the maximum thickness regarding the maximum lift and the stalling angle of attack, respectively, are major. The lower-surface flatness of the airfoil is also a crucial geometrical parameter for aerodynamic performance. It is proven here that, generally, the application of the regression equations for an assessment of the aerodynamic performance is relatively acceptable, along with an expectation that the lift-curve slope violates the normality assumption.