• 제목/요약/키워드: Low Reynolds $k-{\varepsilon}$ Turbulence Model

검색결과 51건 처리시간 0.025초

고체 추진제 로켓엔진의 정상 및 비정상 연소특성 해석 (Analysis for Steady-State and Transient Combustion Characteristic of Solid Propellant Rocket Engine)

  • 김후중;김용모;윤명원
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제20회 춘계학술대회 논문집
    • /
    • pp.233-239
    • /
    • 2003
  • 본 연구는 고체 추진제 로켓 엔진의 연소과정을 수치적으로 해석하였다. 고체 추진제로는 double-base propellant를 이용하였으며 고체상에서는 2개의 포괄적인 반응식을 기체상에서는 5개의 포괄적인 반응식을 이용하였고 난류와 화학반응의 상호작용 PaSR(Partially Stirred Reactor)모델을 사용하였다. 고체 연료 벽면에서의 분출 효과로 야기되는 대류열전달의 불확실성을 줄이기 위하여 낮은 레이놀즈 수 k-$\varepsilon$난류모델을 적용하였다. 계산된 수치결과를 토대로 고체 추진제 로켓 엔진의 난류연소 과정 및 온도장과 압력장의 비정상 특성에 대하여 상세히 기술하였다.

  • PDF

Turbulent Natural Convection in a Hemispherical Geometry Containing Internal Heat SourcesZ

  • Lee, Heedo;Park, Goon-cherl
    • Nuclear Engineering and Technology
    • /
    • 제30권6호
    • /
    • pp.496-506
    • /
    • 1998
  • This paper deals with the computational modeling of buoyancy-driven turbulent heat transfer involving spatially uniform volumetric heat sources in semicircular geometry. The Launder & Sharma low-Reynolds number k-$\varepsilon$ turbulence model without any modifications and the SIMPLER computational algorithm were used for the numerical modeling, which was incorporated into the new computer code CORE-TNC. This computer code was subsequently benchmarked with the Mini-ACOPO experimental data in the modified Rayleigh number range of 2$\times$10$^{13}$ $\times$10$^{14}$ . The general trends of the velocity and temperature fields were well predicted by the model used, and the calculated isotherm patterns were found to be very similiar to those observed in previous experimental investigations. The deviation between the Mini-ACOPO experimental data and the corresponding numerical results obtained with CORE-TNC for the average Nusselt number was less than 30% using fine grid in the near-wall region and the three-point difference formula for the wall temperature gradient. With isothermal pool boundaries, heat was convected predominantly to the upper and adjacent lateral surfaces, and the bottom surface received smaller heat fluxes.

  • PDF

난류유동해석을 통한 환기효율의 수치해석적 연구 (Numerical Analysis of Ventilation Effectiveness using Turbulent Airflow Modeling)

  • 한화택
    • 설비공학논문집
    • /
    • 제4권4호
    • /
    • pp.253-262
    • /
    • 1992
  • A numerical procedure is introduced to calculate local ventilation effectiveness using the definitions of local decay rate and local mean age. A low Reynolds number $k-{\varepsilon}$ model is implemented to calculate steady state turbulent velocity distributions, and a step-down method is used to calculate transient concentration distributions. Simulations are carried out for several different values of air change rates and several different diffuser angles in a two-dimensional model of a half scale office room. The results show that the local ventilation effectiveness within a room could vary significantly from one location to another. The nominal air change rate based on the assumption of complete mixing of room air does not provide the local ventilation effectiveness information. It is numerically proved that the local mean age distribution obtained from the transient calculation is equivalent to the steady state concentration distribution with homogeneously distributed contaminant sources.

  • PDF

CFD modelling and the development of the diffuser augmented wind turbine

  • Phillips, D.G.;Richards, P.J.;Flay, R.G.J.
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.267-276
    • /
    • 2002
  • Research being undertaken at the University of Auckland has enabled Vortec Energy to improve the performance of the Vortec 7 Diffuser Augmented Wind Turbine. Computational Fluid Dynamic (CFD) modelling of the Vortec 7 was used to ascertain the effectiveness of geometric modifications to the Vortec 7. The CFD work was then developed to look at new geometries, and refinement of these led to greater power augmentation for a given diffuser exit area ratio. Both full scale analysis of the Vortec 7 and a wind tunnel investigation of the development design have been used for comparison with the CFD model.

Analysis on Characteristic of Pressure Fluctuation in Hydraulic Turbine with Guide Vane

  • Shi, FengXia;Yang, JunHu;Wang, XiaoHui
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권3호
    • /
    • pp.237-244
    • /
    • 2016
  • An unsteady three-dimensional simulation based on Reynolds time-averaged governing equation and RNG $k-{\varepsilon}$ turbulence model, was presented for pump-as-turbine, the pressure fluctuation characteristic of hydraulic turbine with guide vane was obtained. The results show that the time domains of pressure fluctuation in volute change periodically and have identical cycles. In volute tongue and inlet pressure fluctuations are light, while in dynamic and static coupling interface pressure fluctuations are serious; In impeller blade region the pressure fluctuation of pressure surface are lighter than that of suction surface. The dominant frequencies of pressure fluctuation concentrate in low frequency region, and concentrate within 2 times of the blade passing frequency.

Numerical Analysis of Centrifugal Impeller for Different Viscous Liquids

  • Bellary, Sayed Ahmed Imran;Samad, Abdus
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권1호
    • /
    • pp.36-45
    • /
    • 2015
  • Oil and gas industry pumps viscous fluids and investigation of flow physics is important to understand the machine behavior to deliver such fluids. 3D numerical flow simulation and analysis for different viscous fluids at different rotational speeds of a centrifugal impeller have been reported in this paper. Reynolds-averaged Navier Stokes (RANS) equations were solved and the performance analysis was made. Standard two equation k-${\varepsilon}$ model was used for the turbulence closure of steady incompressible flow. An inlet recirculation and reverse flow in impeller passage was observed at low impeller speeds. It was also found that the higher viscosity fluids have higher recirculation which hinders the impeller performance.

EMBR을 이용한 연주공정에서의 난류유동 및 응고에 대한 연구 (A Study on the Turbulent Flow and Solidification in a Continuous Casting Process with Electromagnetic Brake)

  • 김덕수;김우승
    • 대한기계학회논문집B
    • /
    • 제23권3호
    • /
    • pp.374-387
    • /
    • 1999
  • Two-dimensional turbulent fluid flow and solidification were investigated in a continuous casting process of a steel slab with electromagnetic field. The electromagnetic field was described by the Maxwell equations. The enthalpy-porosity relation was employed to suppress the velocity within a mushy region. A revised low-Reynolds number $k-{\varepsilon}$ turbulence model was used to consider the turbulent effects. It is shown that the temperature gradient in the casting direction in the case with EMBR becomes very weak compared to that of the case without EMBR. The results also show that the velocity profiles of the case with solidification are quite different from those of the case without solidification.

초음속 디퓨져 시동 과정에 관한 수치 모사; 초기 진공도에 따른 디퓨져 내부 충격파 구조의 발달 과정 (Numerical simulation on starting transients in supersonic exhaust diffuser; evolution of internal shock structures with different initial cell pressures)

  • 박병훈;임지환;윤응섭
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제25회 추계학술대회논문집
    • /
    • pp.46-55
    • /
    • 2005
  • For the sea-level performance test of rocket motor designed to operate in the upper atmosphere, ejectors with no induced secondary flow are generally used, which serves dual purposes of evacuating the test cell and performing as a supersonic exhaust diffuser (SED). The main concern of this research is to simulate starting transients in order to visualize evolution of internal shock structures in SED with different initial cell (vacuum chamber) pressures. RANS code with low Reynolds $k-\varepsilon$ turbulence model was employed for these computations. Numerical results were compared with the pressure measurements previously performed [Proceedings of 2004 Annual Conference, KIMST], and showed good agreements with pressure-time history of measured data. In the case of low vacuum chamber pressure, abrupt impingement of the under-expanded supersonic jet from the nozzle onto the diffuser wall was observed, whereas initial impingement point was located downstream and moved slowly upstream in the case of non-vacuum chamber pressure. In spite of initially dissimilar evolution of shock structures, iso-mach contour revealed that the steady shock structures had little difference except the location of flow separation and normal shock.

  • PDF

멤브레인형 LNG 수송선 코파담내의 난류 자연대류 (The Turbulent Natural Convection in Membrane Type LNG Carrier Cofferdam)

  • 정한식;정효민;김경근;노승탁
    • 대한기계학회논문집B
    • /
    • 제23권2호
    • /
    • pp.281-287
    • /
    • 1999
  • The turbulent natural convection in the membrane type LNG carrier cofferdam with heating points has been studied by numerical method. As the numerical methods, we introduced the three turbulence model, a standard $k-{\varepsilon}$ model and two case of a low Reynolds number models. The parameters considered for this study ore number and capacity of heating points i.e., $1{\leq}Ns{\leq}12$ and $1.0{\times}10^5{\leq}Qs(W/m^3){\leq}1.0{\times}10^8$. The results of the isotherms and velocity vectors have been represented for various parameters. The temperature and velocity at upper position in the space ore shown to be higher than those at lower position. For obtaining the optimal temperatures, $20{\sim}30^{\circ}C$ in the cofferdam space, the heating capacities show $2.0{\times}10^7W/m^3$ at g-heating points and $1.0{\times}10^7W/m^3$ at 12-points. The mean temperature in the cofferdam space can be expressed as a function of number and capacity of heating points.

Multi-Objective Shape Optimization of an Axial Fan Blade

  • Samad, Abdus;Lee, Ki-Sang;Kim, Kwang-Yong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제16권1호
    • /
    • pp.1-8
    • /
    • 2008
  • Numerical optimization for design of a blade stacking line of a low speed axial flow fan with a fast and elitist Non-Dominated Sorting of Genetic Algorithm(NSGA-II) of multi-objective optimization using three-dimensional Navier-Stokes analysis is presented in this work. Reynolds-averaged Navier-Stokes(RANS) equations with ${\kappa}-{\varepsilon}$ turbulence model are discretized with finite volume approximations and solved on unstructured grids. Regression analysis is performed to get second order polynomial response which is used to generate Pareto optimal front with help of NSGA-II and local search strategy with weighted sum approach to refine the result obtained by NSGA-II to get better Pareto optimal front. Four geometric variables related to spanwise distributions of sweep and lean of blade stacking line are chosen as design variables to find higher performed fan blade. The performance is measured in terms of the objectives; total efficiency, total pressure and torque. Hence the motive of the optimization is to enhance total efficiency and total pressure and to reduce torque.