• Title/Summary/Keyword: Low Reynolds $k-{\varepsilon}$ Turbulence Model

Search Result 51, Processing Time 0.022 seconds

A Numerical Study on the Flow of a Model Intake Port Using Low Reynolds Number (저 레이놀즈수 k-ε난류모형에 의하 축대칭 모형포트 유동의 수치해석적 연구)

  • Hong, Y.J.;Kim, C.S.;Choi, Y.D.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.1
    • /
    • pp.26-37
    • /
    • 1994
  • In this study, flow of a model intake port/valve system is analyzed by using low Reynolds number $k-{\varepsilon}$ model. Discharge coefficient was obtained from computational results for the various cases of valve lifts. Discharge coefficient becomes maximum when the valve lift is 20mm, and does not increase or decrease in proportional to valve lift. Most of pressure drop and production of turbulent kinetic energy occur at the edge points of the valve and the valve seat Thus, in order to improve discharge coefficient, rounding of edge points in valve and valve seat is recommended. As valve lift is increased, the velocity of the intake jet in the valve passage decreases, and the direction of the jet is more inclined toward the valve seat.

  • PDF

Numerical Study of Three-Dimensional Compressible Flow Structure Within an S-Duct for Aircraft Engine Inlet

  • Cho, Soo-Yong;Park, Byung-Kyu
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.1
    • /
    • pp.36-47
    • /
    • 2000
  • Three-dimensional compressible turbulent flow fields within the passage of a diffusing S-duct have been simulated by solving the Navier-Stokes equations with SIMPLE scheme. The average inlet Mach number is 0.6 and the Reynolds number based on the inlet diameter is $1.76{\times}10^6$ The extended $k-{\varepsilon}$ turbulence model is applied to modeling the Reynolds stresses. Computed results of the flow in a circular diffusing S-duct provide an understanding of the flow structure within a typical engine inlet system. These are compared with experimental wall static-pressure, total-pressure fields, and secondary velocity profiles. Additionally, boundary layer thickness, skin friction values, and streamlines in the symmetric plane are presented. The computed results depict the interaction between the low energy flow by the flow separation and the high energy flow by the reversed duct curvature. The computed results obtained using the extended $k-{\varepsilon}$ turbulence model.

  • PDF

Numerical Study on the Turbulent Flow in the $180^\circ$ Bends increasing Cross-sectional Aspect Ratio (단면의 폭이 증가하는 $180^\circ$ 곡덕트 내 난류유동의 수치해석적 연구)

  • 김원갑;김철수;최영돈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.9
    • /
    • pp.804-810
    • /
    • 2004
  • This paper reports the characteristics of the three dimensional turbulent flow by numerical method in the 180 degree bends with increasing cross-sectional area. Calculated pressure and velocity, Reynolds stress distributions are compared to the experimental data. Turbulence model employed are low Reynolds number $textsc{k}$-$\varepsilon$ model and algebraic stress model(ASM). The results show that the main vortex generated from the inlet part of the bend maintained to outlet of the bend and vortices are continually developed at the inner wall region. The distribution of turbulent kinetic energy along the bend are increase up to 120$^{\circ}$ because of increment of cross-sectional area. Secondary flow strength of the flow is lower about 60% than that of square duct flow.

Numerical Study on Turbulent Flow in a Conical Diffuser (원추형 디퓨져 내의 난류운동에 관한 수치해석적 연구)

  • 강신형;최영석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1971-1978
    • /
    • 1992
  • A turbulent flow in a conical diffuser with total divergence angle of 8.deg. was numerically studied. The low Reynolds number k-.epsilon. model(Launder-Sharma model) was adopted to simulate the turbulence. The continuity and time averaged Navier-Stokes equations in a nonorthogonal coordinate system were solved by a finite volume method based on the fully elliptic formulation. The low Reynolds number k-.epsilon. model reasonably simulates the pressure recovery and the mean velocity components. However, there are also considerable discrepancies between predicted and measured shear stress distribution on the wall and turbulent kinetic energy distributions. It is necessary to investigate the flow structure at the entry of the diffuser, numerically as well as experimentally.

Numerical Determination of Lateral Loss Coefficients for Subchannel Analysis in Nuclear Fuel Bundles (핵 연료집합체 부수로 해석을 위한 횡 방향 압력손실계수의 수치적 결정)

  • Kim, Sin;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.491-502
    • /
    • 1995
  • In accurate prediction of cross-flow based on detailed knowledge of the velocity field in subchannels of a nuclear fuel assembly is of importance in nuclear fuel performance analysis. In this study, the low-Reynolds number k-$\varepsilon$ turbulence model has been adopted in too adjacent subchannels with cross-flow. The secondary flow is accurately estimated by the anisotropic algebraic Reynolds stress model. This model was numerically calculated by the finite element method and has been verified successfully through comparison with existing experimental data. Finally, with the numerical analysis of the velocity Held in such subchannel domain, an analytical correlation of the lateral loss coefficient is obtained to predict the cross-flow rate in subchannel analysis codes. The correlation is expressed as a function of the ratio of the lateral How velocity to the donor subchannel axial velocity, recipient channel Reynolds number and pitch-to-diameter.

  • PDF

An Effect of Shaft Speed on the Leakage in a labyrinth Seal (Labyrinth Seal 내 누수량에 미치는 축 회전속도의 영향)

  • 이관수;이상욱;김창호
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1990.06a
    • /
    • pp.73-91
    • /
    • 1990
  • Incompressible turbulent flow in a single cavity of the stepped multi-cavity labyrinth seal is numerically analyzed to investigate an effect of the shaft speed on the leakage. SIMPLER algorithm is used to solve governing equations, and low-Reynolds k-$\varepsilon$ turbulence model as outlined by Launder and Sharma is adopted to predict turbulent flow. Pressure drops for the cavity with and without the groove are evaluated for four different Reynolds numbersand three different shaft speeds.

  • PDF

An Effect of Shaft Speed on the Leakage in a Labyrinth Seal (Labyrinth Seal 내 누수량에 미치는 축 회전속도의 영향)

  • 이관수;이상욱;김창호
    • Tribology and Lubricants
    • /
    • v.6 no.2
    • /
    • pp.27-33
    • /
    • 1990
  • Incompressible turbulent flow in a single cavity of the stepped multi-cavity labyrinth seal is numerically analyzed to investigate an effect of the shaft speed on the leakage. SIMPLER algorithm is used to solve governing equations, and low-Reynolds k-$\varepsilon$ turbulence model as outlined by Launder and Sharma is adopted to predict turbulent flow. Pressure drops for the cavity with and without the groove are evaluated for four different Reynolds numbers and three different shaft speeds.

A Numerical Analysis of Supersonic Intake Buzz in an Axisymmetric Ramjet Engine

  • Yeom, Hyo-Won;Sung, Hong-Gye;Yang, Vigor
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.165-176
    • /
    • 2015
  • A numerical analysis was conducted to investigate the inlet buzz and combustion oscillation in an axisymmetric ramjet engine with wedge-type flame holders. The physical model of concern includes the entire engine flow path, extending from the leading edge of the inlet center-body through the exhaust nozzle. The theoretical formulation is based on the Farve-averaged conservation equations of mass, momentum, energy, and species concentration, and accommodates finite-rate chemical kinetics and variable thermo-physical properties. Turbulence closure is achieved using a combined scheme comprising of a low-Reynolds number k-${\varepsilon}$ two-equation model and Sarkar's compressible turbulence model. Detailed flow phenomena such as inlet flow aerodynamics, flame evolution, and acoustic excitation as well as their interactions, are investigated. Mechanisms responsible for driving the inlet buzz are identified and quantified for the engine operating at subcritical conditions.

A Non-linear Low-Reynolds-Number Heat Transfer Model for Turbulent Separated and Reattaching Flows (난류박리 및 재부착 유동에 대한 저레이놀즈수 비선형 열전달 모형의 개발)

  • Rhee, Gwang-Hoon;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.316-323
    • /
    • 2000
  • A nonlinear low-Reynolds-number heat transfer model is developed to predict turbulent flow and heat transfer in separated and reattaching flows. The $k-{\varepsilon}-f_{\mu}$ model of Park and Sung (1997) is extended to a nonlinear formulation, based on the nonlinear model of Gatski and Speziale (1993). The limiting near-wall behavior is resolved by solving the $f_{\mu}$ elliptic relaxation equation. An improved explicit algebraic heat transfer model is proposed, which is achieved by applying a matrix inversion. The scalar heat fluxes are not aligned with the mean temperature gradients in separated and reattaching flows; a full diffusivity tensor model is required. The near-wall asymptotic behavior is incorporated into the $f_{\lambda}$ function in conjunction with the $f_{\mu}$ elliptic relaxation equation. Predictions of the present model are cross-checked with existing measurements and DNS data. The model preformance is shown to be satisfactory.

Numerical analysis of turbulent natural convection in a cylindrical transformer enclosure (변압기를 모델링한 두 개의 동심 원형 실린더 내에서 난류 자연대류의 수치해석)

  • 오건제;하수석
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.2
    • /
    • pp.157-166
    • /
    • 1999
  • Numerical calculations of turbulent natural convection in an enclosure of the 20 kYA oil-immersed transformer model are presented. The transformer is modelled as two concentric cylinders with different heights and diameters. The thermal boundary layers are well represented in the temperature distributions along the wall of the transformer model. The flow stratification between the hot and cold walls can not be seen in the transformer model. The turbulence eddy viscosity has its maximum at the center of the core and its maximum values at the top of the core are larger than those at the bottom of the core.

  • PDF