• 제목/요약/키워드: Low Resolution

검색결과 2,642건 처리시간 0.028초

특징형상 변환을 이용한 B-rep모델의 다중해상도 구현 (Multi-resolutional Representation of B-rep Model Using Feature Conversion)

  • 최동혁;김태완;이건우
    • 한국CDE학회논문집
    • /
    • 제7권2호
    • /
    • pp.121-130
    • /
    • 2002
  • The concept of Level Of Detail (LOD) was introduced and has been used to enhance display performance and to carry out certain engineering analysis effectively. We would like to use an adequate complexity level for each geometric model depending on specific engineering needs and purposes. Solid modeling systems are widely used in industry, and are applied to advanced applications such as virtual assembly. In addition, as the demand to share these engineering tasks through networks is emerging, the problem of building a solid model of an appropriate resolution to a given application becomes a matter of great necessity. However, current researches are mostly focused on triangular mesh models and various operators to reduce the number of triangles. So we are working on the multi-resolution of the solid model itself, rather than that of the triangular mesh model. In this paper, we propose multi-resolution representation of B-rep model by reordering and converting design features into an enclosing volume and subtractive features.

Adaptive Contrast Stretching for Land Observation in Cloudy Low Resolution Satellite Imagery

  • Lee, Hwa-Seon;Lee, Kyu-Sung
    • 대한원격탐사학회지
    • /
    • 제28권3호
    • /
    • pp.287-296
    • /
    • 2012
  • Although low spatial resolution satellite images like MODIS and GOCI can be important to observe land surface, it is often difficult to visually interpret the imagery because of the low contrast by prevailing cloud covers. We proposed a simple and adaptive stretching algorithm to enhance image contrast over land areas in cloudy images. The proposed method is basically a linear algorithm that stretches only non-cloud pixels. The adaptive linear stretch method uses two values: the low limit (L) from image statistics and upper limit (U) from low boundary value of cloud pixels. The cloud pixel value was automatically determined by pre-developed empirical function for each spectral band. We used MODIS and GOCI images having various types of cloud distributions and coverage. The adaptive contrast stretching method was evaluated by both visual interpretation and statistical distribution of displayed brightness values.

해상도 향상을 위한 고해상도 복원 알고리즘 연구 (A Study on High Resolution Reconstruction Algorithms for improving Resolution)

  • 백영현;문성룡
    • 한국지능시스템학회논문지
    • /
    • 제17권1호
    • /
    • pp.72-79
    • /
    • 2007
  • 저해상도 영상 정보들 이용하여 고해상도 영상으로 재구성하는 새로운 고해상도 복원 알고리즘을 제안한다. 제안된 고해상도 복원 알고리즘은 super 해상도 이론을 바탕으로 구성되며, super 해상도는 정합과 복원의 순차적인 단계로 구성되어있다. 본 논문에서는 다해상도 분해를 통한 웨이브렛 기저와 하위픽셀이동을 통한 정합으로 많은 데이터 처리량과 잡음을 줄여 주요정보 유지와 에러율 개선하였다. 또한 복원단계에서는 퍼지 웨이브렛 B-스플라인 보간법을 이용하여 블러링과 블록화 현상이 없는 부드러운 영상과 해상도를 얻음을 확인하였다.

훈련용 워게임 모델의 다중해상도모델링 운영소요 및 전투21모델과 TMPS의 다중해상도 연동간 주요 이슈 해결 방안 연구 (Studies on the Operating Requirements of Multi-Resolution Modeling in Training War-Game Model and on the Solutions for Major Issues of Multi-Resolution Interoperation between Combat21 Model and TMPS)

  • 문호석;김수환
    • 한국군사과학기술학회지
    • /
    • 제21권6호
    • /
    • pp.865-876
    • /
    • 2018
  • This study focuses on the operating requirements of multi-resolution modeling(MRM) in training war-game model and proposes solutions for major issues of multi-resolution interoperation between Combat21 model and tank multi-purpose simulator(TMPS). We study the operating requirements of MRM through interviews with defense M&S experts and literature surveys and report the various issues that could occur with low-resolution model Combat21 and high-resolution model TMPS linked, for example, when to switch objects, what information to exchange, what format to switch to, and how to match data resolutions. This study also addresses the purpose and concept of training using multi-resolution interoperation, role of each model included in multi-resolution interoperation, and issue of matching damage assessments when interoperated between models with different resolutions. This study will provide the common goals and directions of MRM research to MRM researchers, defense modeling & simulation organizations and practitioners.

3D 공간상에서의 주변 기울기 정보를 기반에 둔 필터 학습을 통한 MRI 영상 초해상화 (MRI Image Super Resolution through Filter Learning Based on Surrounding Gradient Information in 3D Space)

  • 박성수;김윤수;감진규
    • 한국멀티미디어학회논문지
    • /
    • 제24권2호
    • /
    • pp.178-185
    • /
    • 2021
  • Three-dimensional high-resolution magnetic resonance imaging (MRI) provides fine-level anatomical information for disease diagnosis. However, there is a limitation in obtaining high resolution due to the long scan time for wide spatial coverage. Therefore, in order to obtain a clear high-resolution(HR) image in a wide spatial coverage, a super-resolution technology that converts a low-resolution(LR) MRI image into a high-resolution is required. In this paper, we propose a super-resolution technique through filter learning based on information on the surrounding gradient information in 3D space from 3D MRI images. In the learning step, the gradient features of each voxel are computed through eigen-decomposition from 3D patch. Based on these features, we get the learned filters that minimize the difference of intensity between pairs of LR and HR images for similar features. In test step, the gradient feature of the patch is obtained for each voxel, and the filter is applied by selecting a filter corresponding to the feature closest to it. As a result of learning 100 T1 brain MRI images of HCP which is publicly opened, we showed that the performance improved by up to about 11% compared to the traditional interpolation method.

심층학습 기반 초해상화 기법을 이용한 슬로싱 압력장 복원에 관한 연구 (Study on the Reconstruction of Pressure Field in Sloshing Simulation Using Super-Resolution Convolutional Neural Network)

  • 김효주;양동헌;박정윤;황명권;이상봉
    • 대한조선학회논문집
    • /
    • 제59권2호
    • /
    • pp.72-79
    • /
    • 2022
  • Deep-learning-based Super-Resolution (SR) methods were evaluated to reconstruct pressure fields with a high resolution from low-resolution images taken from a coarse grid simulation. In addition to a canonical SRCNN(super-resolution convolutional neural network) model, two modified models from SRCNN, adding an activation function (ReLU or Sigmoid function) to the output layer, were considered in the present study. High resolution images obtained by three models were more vivid and reliable qualitatively, compared with a conventional super-resolution method of bicubic interpolation. A quantitative comparison of statistical similarity showed that SRCNN model with Sigmoid function achieved best performance with less dependency on original resolution of input images.

Feasibility Study of CNN-based Super-Resolution Algorithm Applied to Low-Resolution CT Images

  • Doo Bin KIM;Mi Jo LEE;Joo Wan HONG
    • 한국인공지능학회지
    • /
    • 제12권1호
    • /
    • pp.1-6
    • /
    • 2024
  • Recently, various techniques are being applied through the development of medical AI, and research has been conducted on the application of super-resolution AI models. In this study, evaluate the results of the application of the super-resolution AI model to brain CT as the basic data for future research. Acquiring CT images of the brain, algorithm for brain and bone windowing setting, and the resolution was downscaled to 5 types resolution image based on the original resolution image, and then upscaled to resolution to create an LR image and used for network input with the original imaging. The SRCNN model was applied to each of these images and analyzed using PSNR, SSIM, Loss. As a result of quantitative index analysis, the results were the best at 256×256, the brain and bone window setting PSNR were the same at 33.72, 35.2, and SSIM at 0.98 respectively, and the loss was 0.0004 and 0.0003, respectively, showing relatively excellent performance in the bone window setting CT image. The possibility of future studies aimed image quality and exposure dose is confirmed, and additional studies that need to be verified are also presented, which can be used as basic data for the above studies.

다중 다층 퍼셉트론을 이용한 저해상도 홍채 영상의 고해상도 복원 연구 (A Study on the Restoration of a Low-Resoltuion Iris Image into a High-Resolution One Based on Multiple Multi-Layered Perceptrons)

  • 신광용;강병준;박강령;신재호
    • 한국멀티미디어학회논문지
    • /
    • 제13권3호
    • /
    • pp.438-456
    • /
    • 2010
  • 홍채 인식은 고유한 홍채 패턴을 이용하여 신원을 확인하는 생체 인식 기술이다. 일반적으로 홍채인식에서 는 홍채 직경이 200 화소(pixel) 이상 되는 고해상도 홍채 영상을 사용하며, 이런 경우 인식률 감소 없이 정확한 홍채 인식 결과를 얻는다고 알려져 있다. 이를 위해 기존의 홍채 인식 시스템들은 줌렌즈 카메라를 사용하지만, 이러한 카메라는 홍채 인식기의 가격과 크기를 증가시키는 요인이 된다. 이러한 문제를 해결하기 위하여 본 연구에서는 줌렌즈 카메라의 사용 없이 저해상도로 취득된 홍채 영상에서의 인식 정확도를 향상할 수 있는 방법을 제안한다. 본 연구에서는 기존의 방법과 비교하여 다음과 같은 두 가지 장점을 갖는다. 첫째, 기존의 연구에서는 홍채 직경이 200 화소 이하인 저해상도 영상에서의 홍채 인식 성능 감소에 대한 정량적 분석이 진행된 바 없다. 본 연구에서는 홍채 영상의 초점 정도, 눈꺼풀 및 속눈썹 가림 정도의 영향을 배제하고, 홍채 영상의 크기 변화에 따른 인식율의 저하정도를 정량적으로 파악하였다. 둘째, 한 장의 저해상도 홍채 영상을 고해상도 영상으로 복원하기 위해 홍채 영역의 에지 방향에 따라 개별적으로 다르게 학습된 다중 다층 퍼셉트론을 적용함으로써, 복원된 영상에서의 인식 정확도를 향상시켰다. 원 영상대비 6%만큼의 크기로 축소한 저해상도 홍채 영상을 고해상도 영상으로 복원한 결과, 제안하는 방법에 의한 홍채 인식의 EER이 기존의 이중선형보간법에 의한 EER보다 0.133% (1.485% - 1.352%) 만큼 감소됨을 알 수 있었다.

고해상도 광학 위성영상을 이용한 시공간 자료 융합의 적용성 평가: KOMPSAT-3A 및 Sentinel-2 위성영상의 융합 연구 (Applicability Evaluation of Spatio-Temporal Data Fusion Using Fine-scale Optical Satellite Image: A Study on Fusion of KOMPSAT-3A and Sentinel-2 Satellite Images)

  • 김예슬;이광재;이선구
    • 대한원격탐사학회지
    • /
    • 제37권6_3호
    • /
    • pp.1931-1942
    • /
    • 2021
  • 최근 고해상도 광학 위성영상의 활용성이 강조되면서 이를 이용한 지표 모니터링 연구가 활발히 수행되고 있다. 그러나 고해상도 위성영상은 낮은 시간 해상도에서 획득되기 때문에 그 활용성에 한계가 있다. 이러한 한계를 보완하기 위해 서로 다른 시간 및 공간 해상도를 갖는 다중 위성영상을 융합해 높은 시공간 해상도의 합성 영상을 생성하는 시공간 자료 융합을 적용할 수 있다. 기존 연구에서는 중저해상도의 위성영상을 대상으로 시공간 융합 모델이 개발되어 왔기 때문에 고해상도 위성영상에 대한 기개발된 융합 모델의 적용성을 평가할 필요가 있다. 이를 위해 이 연구에서는 KOMPSAT-3A 영상과 Sentinel-2 영상을 대상으로 기개발된 시공간 융합 모델의 적용성을 평가하였다. 여기에는 예측을 위해 사용하는 정보가 다른 Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM)과 Spatial Time-series Geostatistical Deconvolution/Fusion Model (STGDFM)을 적용하였다. 연구 결과, 시간적으로 연속적인 반사율 값을 결합하는 STGDFM의 예측 성능이 ESTARFM 보다 높은 것으로 나타났다. 특히 KOMPSAT 영상의 낮은 시간 해상도로 같은 시기에서 KOMPSAT 및 Sentinel-2 영상을 동시에 획득하기 어려운 경우, STGDFM의 예측 성능 향상이 더욱 크게 나타났다. 본 실험 결과를 통해 연속적인 시간 정보를 결합해 상대적으로 높은 예측 성능을 가지는 STGDFM을 이용해 낮은 재방문 주기로 인한 고해상도 위성영상의 한계를 보완할 수 있음을 확인하였다.

Hyperion과 ALI 영상의 융합을 위한 블록 기반의 융합기법 평가 (Evaluation of Block-based Sharpening Algorithms for Fusion of Hyperion and ALI Imagery)

  • 김예지;최재완
    • 한국측량학회지
    • /
    • 제33권1호
    • /
    • pp.63-70
    • /
    • 2015
  • 영상융합 기법은 고해상도 영상을 이용하여 저해상도 영상의 공간해상도를 증대시키는 방법이다. 본 논문에서는 EO-1 위성에 탑재된 ALI 센서와 Hyperion 센서로부터 취득된 고해상도 흑백영상, 저해상도 다중분광 영상 및 초분광 영상을 활용한 초분광 영상의 융합기법에 대한 연구를 수행하였다. 특히, 초분광 영상과 다중분광 영상의 특성을 고려하여 초분광 영상의 블록을 구성하여 ALI 및 Hyperion 영상에 적용하고, 이에 따른 영상융합 기법의 성능을 평가하고자 하였다. 실험결과, 고해상도 흑백영상만을 사용한 융합결과와 비교하여 저해상도 다중분광 영상을 활용한 블록기반의 융합기법이 공간해상도를 효율적으로 향상시킬 수 있음을 확인하였으며, 제안된 융합기법이 기존의 블록기반 융합기법과 비교하여 분광왜곡을 최소화시킬 수 있음을 확인하였다. 이를 통해, 향후 발사될 다양한 초분광 위성 및 항공기 초분광 센서의 활용을 증대시킬 수 있을 것으로 판단된다.