• Title/Summary/Keyword: Low Resolution

Search Result 2,607, Processing Time 0.035 seconds

Development and Evaluation of SWAT Topographic Feature Extraction Error(STOPFEE) Fix Module from Low Resolution DEM (저해상도 DEM 사용으로 인한 SWAT 지형 인자 추출 오류 개선 모듈 개발 및 평가)

  • Kim, Jong-gun;Park, Youn-shik;Kim, Nam-won;Chung, Il-moon;Jang, Won-seok;Park, Jun-ho;Moon, Jong-pil;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.4
    • /
    • pp.488-498
    • /
    • 2008
  • Soil and Water Assessment Tool (SWAT) model have been widely used in simulating hydrology and water quality analysis at watershed scale. The SWAT model extracts topographic feature using the Digital Elevation Model (DEM) for hydrology and pollutant generation and transportation within watershed. Use of various DEM cell size in the SWAT leads to different results in extracting topographic feature for each subwatershed. So, it is recommended that model users use very detailed spatial resolution DEM for accurate hydrology analysis and water quality simulation. However, use of high resolution DEM is sometimes difficult to obtain and not efficient because of computer processing capacity and model execution time. Thus, the SWAT Topographic Feature Extraction Error (STOPFEE) Fix module, which can extract topographic feature of high resolution DEM from low resolution and updates SWAT topographic feature automatically, was developed and evaluated in this study. The analysis of average slope vs. DEM cell size revealed that average slope of watershed increases with decrease in DEM cell size, finer resolution of DEM. This falsification of topographic feature with low resolution DEM affects soil erosion and sediment behaviors in the watershed. The annual average sediment for Soyanggang-dam watershed with DEM cell size of 20 m was compared with DEM cell size of 100 m. There was 83.8% difference in simulated sediment without STOPFEE module and 4.4% difference with STOPFEE module applied although the same model input data were used in SWAT run. For Imha-dam watershed, there was 43.4% differences without STOPFEE module and 0.3% difference with STOPFEE module. Thus, the STOPFEE topographic database for Soyanggang-dam watershed was applied for Chungju-dam watershed because its topographic features are similar to Soyanggang-dam watershed. Without the STOPFEE module, there was 98.7% difference in simulated sediment for Chungju-dam watershed for DEM cell size of both 20 m and 100 m. However there was 20.7% difference in simulated sediment with STOPFEE topographic database for Soyanggang-dam watershed. The application results of STOPFEE for three watersheds showed that the STOPFEE module developed in this study is an effective tool to extract topographic feature of high resolution DEM from low resolution DEM. With the STOPFEE module, low-capacity computer can be also used for accurate hydrology and sediment modeling for bigger size watershed with the SWAT. It is deemed that the STOPFEE module database needs to be extended for various watersheds in Korea for wide application and accurate SWAT runs with lower resolution DEM.

Quad Tree Based 2D Smoke Super-resolution with CNN (CNN을 이용한 Quad Tree 기반 2D Smoke Super-resolution)

  • Hong, Byeongsun;Park, Jihyeok;Choi, Myungjin;Kim, Changhun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.105-113
    • /
    • 2019
  • Physically-based fluid simulation takes a lot of time for high resolution. To solve this problem, there are studies that make up the limitation of low resolution fluid simulation by using deep running. Among them, Super-resolution, which converts low-resolution simulation data to high resolution is under way. However, traditional techniques require to the entire space where there are no density data, so there are problems that are inefficient in terms of the full simulation speed and that cannot be computed with the lack of GPU memory as input resolution increases. In this paper, we propose a new method that divides and classifies 2D smoke simulation data into the space using the quad tree, one of the spatial partitioning methods, and performs Super-resolution only required space. This technique accelerates the simulation speed by computing only necessary space. It also processes the divided input data, which can solve GPU memory problems.

Multi-Resolution Kronecker Compressive Sensing

  • Canh, Thuong Nguyen;Quoc, Khanh Dinh;Jeon, Byeungwoo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.1
    • /
    • pp.19-27
    • /
    • 2014
  • Compressive sensing is an emerging sampling technique which enables sampling a signal at a much lower rate than the Nyquist rate. In this paper, we propose a novel framework based on Kronecker compressive sensing that provides multi-resolution image reconstruction capability. By exploiting the relationship of the sensing matrices between low and high resolution images, the proposed method can reconstruct both high and low resolution images from a single measurement vector. Furthermore, post-processing using BM3D improves its recovery performance. The experimental results showed that the proposed scheme provides significant gains over the conventional framework with respect to the objective and subjective qualities.

Consecutive-Frame Super-Resolution considering Moving Object Region

  • Cho, Sung Min;Jeong, Woo Jin;Jang, Kyung Hyun;Choi, Byung In;Moon, Young Shik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.3
    • /
    • pp.45-51
    • /
    • 2017
  • In this paper, we propose a consecutive-frame super-resolution method to tackle a moving object problem. The super-resolution is a method restoring a high resolution image from a low resolution image. The super-resolution is classified into two types, briefly, single-frame super-resolution and consecutive-frame super-resolution. Typically, the consecutive-frame super-resolution recovers a better than the single-frame super-resolution, because it use more information from consecutive frames. However, the consecutive-frame super-resolution failed to recover the moving object. Therefore, we proposed an improved method via moving object detection. Experimental results showed that the proposed method restored both the moving object and the background properly.

Image Resolution Improvement Using Image Loss Information (영상의 손실 정보를 이용하는 영상 해상도 개선)

  • Kim, Won-Hee;Kim, Jong-Nam
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.7
    • /
    • pp.573-577
    • /
    • 2010
  • Image resolution improvement is commonly technique for applications such as image reconstruction or enlargement. It is important to remove image quality degradation such as blocking effect or artificiality occurrence. In this paper, we propose image resolution improvement method using loss information of image. The proposed compute and estimate by low level interpolation of obtained low resolution image, it is applied by interpolated high resolution as 1-stage interpolation. We generate last interpolation image by iteration of error computation and application between obtained low resolution image and 1-stage interpolation image. By experiments using same test images, we confirmed improvement over 3.2dB of average PSNR and enhancement of subject image quality. Also, we can reduce more than 85% computation complexity. The proposed image resolution improvement method may be helpful for various applications of image processing.

Extracting High Quality Thematic Information by Using High-Resolution Satellite Imagery (고해상도 위성영상을 이용한 정밀 주제 정보 추출)

  • Lee, Hyun-Jik;Ru, Ji-Ho;Yu, Young-Geol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.1
    • /
    • pp.73-81
    • /
    • 2010
  • In recent years, there have been diverse researches and utilizations of creating geo-spatial information with high resolution satellite images. However thematic maps made with middle or low resolution satellite images have low location accuracy and precision of thematic information. This study set out to propose a method of making a precision thematic map with high resolution satellite images by examining the conversion from the conventional method based on middle or low resolution satellite images to the automatic method based on high resolution satellite images of GSD 1m or lower, extracting thematic information of middle or large scale of 1/5,000 or lower, and analyzing its accuracy. Seven classification classes were categorized according to the object-oriented classification in order to automatically extract thematic information with high resolution satellite images. And the classification results were compared and analyzed with the old middle scale land cover map and 1/1000 digital map.

Fast Content Adaptive Interpolation Algorithm Using One-Dimensional Patch-Based Learning (일차원 패치 학습을 이용한 고속 내용 기반 보간 기법)

  • Kang, Young-Uk;Jeong, Shin-Cheol;Song, Byung-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.1
    • /
    • pp.54-63
    • /
    • 2011
  • This paper proposes a fast learning-based interpolation algorithm to up-scale an input low-resolution image into a high-resolution image. In conventional learning-based super-resolution, a certain relationship between low-resolution and high-resolution images is learned from various training images and a specific high frequency synthesis information is derived. And then, an arbitrary low resolution image can be super-resolved using the high frequency synthesis information. However, such super-resolution algorithms require heavy memory space to store huge synthesis information as well as significant computation due to two-dimensional matching process. In order to mitigate this problem, this paper presents one-dimensional patch-based learning and synthesis. So, we can noticeably reduce memory cost and computational complexity. Simulation results show that the proposed algorithm provides higher PSNR and SSIM of about 0.7dB and 0.01 on average, respectively than conventional bicubic interpolation algorithm.

Super-Resolution Transmission Electron Microscope Image of Nanomaterials Using Deep Learning (딥러닝을 이용한 나노소재 투과전자 현미경의 초해상 이미지 획득)

  • Nam, Chunghee
    • Korean Journal of Materials Research
    • /
    • v.32 no.8
    • /
    • pp.345-353
    • /
    • 2022
  • In this study, using deep learning, super-resolution images of transmission electron microscope (TEM) images were generated for nanomaterial analysis. 1169 paired images with 256 × 256 pixels (high resolution: HR) from TEM measurements and 32 × 32 pixels (low resolution: LR) produced using the python module openCV were trained with deep learning models. The TEM images were related to DyVO4 nanomaterials synthesized by hydrothermal methods. Mean-absolute-error (MAE), peak-signal-to-noise-ratio (PSNR), and structural similarity (SSIM) were used as metrics to evaluate the performance of the models. First, a super-resolution image (SR) was obtained using the traditional interpolation method used in computer vision. In the SR image at low magnification, the shape of the nanomaterial improved. However, the SR images at medium and high magnification failed to show the characteristics of the lattice of the nanomaterials. Second, to obtain a SR image, the deep learning model includes a residual network which reduces the loss of spatial information in the convolutional process of obtaining a feature map. In the process of optimizing the deep learning model, it was confirmed that the performance of the model improved as the number of data increased. In addition, by optimizing the deep learning model using the loss function, including MAE and SSIM at the same time, improved results of the nanomaterial lattice in SR images were achieved at medium and high magnifications. The final proposed deep learning model used four residual blocks to obtain the characteristic map of the low-resolution image, and the super-resolution image was completed using Upsampling2D and the residual block three times.

A Background Segmentation Using Color and Edge Information In Low Resolution Color Image (저해상도 칼라 영상의 색상 정보와 에지정보를 이용한 배경 분리)

  • 정민영;박성한
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.39-42
    • /
    • 2003
  • In this paper, we propose a background segmentation method in low resolution color image. A segmentation algorithm is based on color and edge information. In edge image, adaptive and local thresholds are applied to suppress paint boundaries. Through our experiments, the proposed algorithm efficiently segments background from objects.

  • PDF

Analysis and a Compensation Method for Torque Ripple caused by Position Error in Switched Reluctance Motor Position Sensorless Control (스위치드 릴럭턴스 전동기의 위치 센서리스 제어시 위치오차에 의해 발생하는 토크리플 해석과 그 보상 방법)

  • Oh, Ju-Hwan;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.806-807
    • /
    • 2011
  • This paper presents a new sensorless controller used with both the classical sliding mode observer(SMO) and the rate of current change in order to a reduced torque ripple for switched reluctance motor (SRM) sensorless drives. The new sensorless scheme consists of a sliding mode observer (SMO)-based position sensorless approach for high speeds along with a low-resolution discrete the rate of current change for low speeds and standstill. The new position estimation resets between the SMO and the low-resolution of current change according to the speed sign and the position error difference between the SMO and the low-resolution rate of current change. The simulation results show the robustness of this new high performance sensorless control approach with the hybrid sensorless control topology.

  • PDF