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Abstract: Compressive sensing is an emerging sampling technique which enables sampling a signal 
at a much lower rate than the Nyquist rate. In this paper, we propose a novel framework based on 
Kronecker compressive sensing that provides multi-resolution image reconstruction capability. By 
exploiting the relationship of the sensing matrices between low and high resolution images, the 
proposed method can reconstruct both high and low resolution images from a single measurement 
vector. Furthermore, post-processing using BM3D improves its recovery performance. The 
experimental results showed that the proposed scheme provides significant gains over the 
conventional framework with respect to the objective and subjective qualities.     
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1. Introduction 

Recently, compressive sensing (CS) [1] has attracted 
considerable attention for its capability of simultaneous 
sampling and compression. CS allows, from a much 
smaller number of measurements, to reconstruct a signal 
by relying on the sparsity property of signals in some 
sparse domains (i.e., DCT, DWT, gradient domain...). On 
the other hand, in case of multidimensional signals (e.g., 
image or video), a frame-based CS has practical 
difficulties, such as high computational complexity or 
large memory requirements arising from the large number 
of measurements. In this regard, a block-based approach [2, 
3] was developed but it missed the global characteristics of 
the images despite preserving the local ones. Duarte et al. 
introduced a Kronecker compressive sensing (KCS) 
scheme [4] that senses data in the frame-based manner but 
can reduce the complexity considerably using a Kronecker 
product. 

A key challenge of CS towards practical applications is 
reducing the computational complexity of reconstruction. 
In general, the higher image resolution becomes, the larger 
computational complexity CS requires. A partial solution 
for this is a multi-resolution sensing framework that senses 
multi-resolution measurements and reconstructs a low 
resolution (LR) image, but later a high resolution (HR) 
image is reconstructed using a powerful reconstruction 
supported by sufficient computational complexity. This 

scheme has an added feature of providing a fast preview 
for real-time compressive image/video with a low-cost 
reconstruction of a low resolution (LR) image [11-13]. 
This can also provide benefits to many image processing 
tasks, such as image classification, object detection, etc. 
with little sacrifice in accuracy. For example, the initial 
object detection can be obtained from a low cost 
reconstructed LR image/video, and then enhanced from a 
reconstructed HR image/video.  

CS is unable to provide a high quality reconstruction if 
its subrate is too low. Because CS takes a much smaller 
number of measurements via random projection, it is easy 
to miss important signal features. The loss of some high 
frequency signal components brings in consequential 
suffering of heavy staircase artifacts. Therefore, CS 
recovery has difficulty in reconstructing accurate HR 
images at a very low subrate. Conventional image/video 
compression faces similar problems in achieving a very 
high compression ratio while dealing with a HR image. 
One possible remedy is employment of down-sampling of 
the image/video sequences before compression and using a 
super resolution (SR) technique to up-sample the 
decompressed signal at the decoder [8]. SR is an image 
processing technique that can generate a HR image from a 
single or a set of LR images [8]. This scheme can be used 
for quality-bitrate control of a reconstructed HR in 
spatially scalable image/video coding. 

One of the widely used CS reconstruction methods is  
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the total variation (TV) technique [5-7], which can achieve 
good CS recovery performance while preserving edges of 
images well. However, in case of a very low subrate, such 
as 0.05, it has very poor recovery performance, as depicted 
in Fig. 1(a). Therefore, for a given low subrate, instead of 
sensing the original resolution (called high resolution 
(HR)) image, it might be better if the same sensing is 
performed to its spatially down-sampled (called low 
resolution (LR)) image, and the HR image is generated by 
up-sampling the CS reconstructed LR image. The super 
resolution (SR) technique can be used for up-sampling. 

Motivated by this, the aim of this study is to sense a LR 
image and to utilize SR to achieve better HR without 
increasing the number of measurements. Fig. 1 illustrates 
such a possibility. Fig. 1(a) shows a CS reconstructed 
original resolution image of 512x512 (i.e., HR image) at a 
low subrate of 0.05. Equivalent subrate of 0.2 (=0.05x4) is 
used to produce a LR image (256x256), and its 
reconstructed HR images are shown in Figs. 1(b) and (c) 
which are generated by up-sampling LR via a bi-cubic 
interpolation [16] (for the algorithm names in Fig. 1, see 
Table 1, which will be explained later). As shown in Figs. 
1(b) and (c) in comparison with Fig. 1(a), the SR-assisted 
reconstructed HR image produces higher reconstruction 
quality.  

This paper proposes a multi-resolution compressed 
sensing framework that allows images to be reconstructed 
at various resolutions. By exploiting the relationship 
between the measurements of LR and HR images, we 
propose a HR sensing matrix, which shares the same 
measurement vector with the sensing LR image. In 
addition, the proposed sensing scheme corresponds to the 
sensing spatially down-sampled image (i.e., LR image) at a 
high subrate. That is, it senses the LR image using the 
same number of measurements originally associated with 
the HR image. A HR image is finally reconstructed from 
the LR image. The reconstructed images are refined further 
to remove staircase artifacts using a BM3D [9] filter 
through post-processing as reported in [10]. The proposed 
multi-resolution Kronecker compressive sensing scheme is 
simulated to verify its efficiency over the conventional 
KCS in both PSNR and perceptual quality. 

The rest of this paper is organized as follows. Section 

II presents the background of the compressed sensing. The 
proposed multi-resolution sensing framework is delivered 
in section III. Numerical experiments are presented in 
section IV, and the paper is concluded in section V. 

2. Background 

This section first introduces the background of 
compressive sensing and then presents some related work.  

2.1 Compressive Sensing 
An emerging signal processing technique, CS allows 

acquiring signals with a much smaller sampling rate than 
the Shannon/Nyquist rate via a random projection. CS 
theory states that for a natural image, 

2 1 ,nf ×∈R  which is 
sparse in a selected domain specified by a sparsifying 
matrix, , ,f αΨ = Ψ  it is possible to reduce its sampling 
cost by taking a much smaller number of measurements, 

2 1 ,my ×∈R  where ,y f= Φ  and later reconstructing the 
signal f  by solving the following optimization problem: 

 

  (1) 
 

where 2 2 ,m n  the notation 
p

⋅  denotes the norm-p 

with p being normally set to either 0 or 1, and 
2 2m n×Φ∈R  

is a sensing matrix which satisfies the restricted isometry 
property [1].  

To reduce complexity caused by a large size of sensing 
matrix in multi-dimensional signals, Duarte and Baraniuk 
[4] presented Kronecker compressive sensing, which 
jointly models the sensing matrix for each signal 
dimension. For the 2D signal, ,n nF ×∈R  the sensing 
matrix is given as ,R GΦ = ⊗  where ⊗  denotes the 
Kronecker product, R  and T m nG ×∈R  represent the 
sensing matrices for each dimension. Therefore, the CS 
measurement is rewritten as ,Y RFG=  where ( )y vect Y=   

 
(a) TV[6]: 25.26dB (b) SRTV: 27.06dB (c) SRTV+BM3D2: 28.96dB 

Fig. 1. Recovered Lena image (512x512) from compressive sensing with a subrate of 0.05 (see Table 1). 
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is a vectorized version of the measurement matrix .Y  The 
measurement constraint is: 

 

   
 

Under the framework of KCS, the optimization 
problem formulated as a total variation (TV)-based CS 
recovery [5-7] can be solved for the reconstructed signal: 

 

  
(2)

 
 

where ,μ γ  are constant parameters and the total variation 
(an)isotropic for 2D discrete image are given as: 

 

   
 

where x∇  and y∇  denote the gradient operators in the 
horizontal and vertical direction. Using the split Bregman 
technique [5], Eq. (2) can be solved more easily by 
replacing , , ,x x y yV F D F D= = ∇ = ∇  and adding para- 
meters , ,x yB B  and W  as follows: 

 

  
(3)

 
 

where λ  and ν  are constant parameters. Eq. (3) can be split 
further into sub-problems , , , ,x yF V D D  which can be 
solved via eigen-decomposition and shrinkage function [6]. 

2.2 Related Work 
The problem of multi-resolution CS has attracted high-

level of attention recently. Park et al. presented a multi-
scale framework for compressive video sensing [17], 
which can obtain LR and HR reconstructed images at the 
recovery side. On the other hand, this framework requires 
that compressive measurements are sampled at multiple 
scales for each video frame. Towards practical video 
compressive sensing, Baraniuk et al. proposed a dual scale 
sensing matrix (DSS) in CS-MUVI framework [12], which 
can generate an efficiently computable low-resolution 
video pre-view. To reduce computational complexity 
further, Goldstein et al. [13] proposed a new multi-
resolution framework based on the STOne transform. In 
addition, the DSS was exploited further to provide 
spatially scalable compressive sensing [11]. These 
algorithms were designed for a single pixel camera 
imaging system [14], in which the elements of the sensing 
matrices are chosen either +1 or -1 to achieve easier and 
fast implementation. In the present approach, the HR 

sensing matrix is created based on the LR sensing matrix, 
which can be generated arbitrarily, like any other sensing 
matrices, such as random Gaussian sensing matrix, etc.  

While related works [11-13, 17] were proposed for a 
normal CS framework, the proposed sensing scheme was 
significantly different in that it was under the KCS 
framework [4]. Moreover, while the approach [11, 12] 
sacrifices the performance of the recovered LR to have 
multi-resolution capability, in contrast to this approach, the 
proposed method reconstructs LR at a high reconstruction 
quality and then uses the SR technique to improve the HR 
quality. An approach of using SR to improve performance 
for exploiting predictive coding in spatially scalable 
compressive imaging has been reported [11], but it senses 
the HR and LR measurements separately and reconstructs 
them independently. In contrast, the proposed algorithm in 
this paper shares the same measurements between HR and 
LR, and reconstructs the HR and LR images jointly. 

3. Proposed Multi-Resolution Kronecker 
Compressive Sensing 

In this section, we first present a relationship between 
sensing matrices of high and low resolution images, and 
outline the proposed multi-resolution sensing matrices. 
The proposed reconstruction will be given in the later part. 

3.1 Multi-resolution CS Acquisition 
As mentioned in [13], the multi-resolution CS is 

desirable for enabling a fast preview of an image/video. 
Unfortunately, the conventional KCS framework [4] does 
not support the multi-resolution measurements. In general, 
KCS measurements of the same image at different 
resolutions (HR and LR) can be obtained by the following: 

 

  (4) 
  (5) 

 
where HRY  and LRY  denote the measurement matrices of the 
HR 2 2( )n n

HRF ×∈R  and LR image ( )n n
LRF ×∈R  obtained by 

the corresponding sensing matrices, ,LRR  T m n
LRG ×∈R  and 

,HRR  (2 ) ,T m n
HRG ×∈R  respectively. 

Fig. 2. Relationship between the HR and LR sensing 
matrices.  
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To support the proposed multi-resolution measurement 
(that is, the same measurements shared by HR and LR), it 
is important to carefully design the sensing matrices so that 
the images can be reconstructed at different resolutions 
from the same set of measurements. In addition, it is better 
to design sensing matrices to be fully compatible with the 
conventional KCS without any modification of the sensing 
and recovering parts. Therefore, the relationship between 
the HR and LR sensing matrices should be investigated 
carefully. For that purpose, the LR and HR images are 
obtained via down-sampling operation as follows:  

 

  

(6)

 
 

where SD  is a down-sampling matrix, LRF  is a bi-linear 
down-sampled version of ,HRF  and the (.)T  operator 
stands for a transpose operator. By setting ,LR HRY Y=  the 
HR sensing matrix can be derived from the LR sensing one 
as follows: 

 

  

(7)

 
 

Fig. 2 shows the relationship between the two sensing 
matrices. Using this HR sensing matrix (called LSM), the 
LR image and HR image can be reconstructed with the 
same set of measurements. Note that the use of the HR 
sensing matrix in (7) is equivalent to the sensing LR image 
at a high subrate. Therefore, we discard the high frequency 
component (i.e., textures) at the sensing part. By keeping 
the same number of measurements, if a subrate of the 
sensing HR image is ,r  then the subrate for the LR image 
is 22 .r×  As a result, the proposed sensing matrix prefers a 
subrate smaller than 0.25 because the subrate of LR 
becomes 1. Otherwise, the additional measurements will 
be wasted. 

3.2 Multi-Resolution CS Reconstruction 
Because HR and LR image sensing is designed to share 

the same measurements, reconstructing the HR and LR 
images is straightforward using TV[6] without 
modification. This is the conventional sensing and 
recovery method (called TV in Table 1). On the other hand, 
in this paper, the LR image is reconstructed first from the 
measurements, ,LRY  using the sensing matrices , ,LR LRR G  
and the SR technique, such as bi-cubic interpolation [16], 
is applied simply to the LR image to generate the HR 
image; this is denoted by the Super-Resolution-assisted 
Total Variation reconstruction (SRTV) in Table 1. Thanks 

to the SR technique, we are able to obtain some details in 
the reconstructed HR image. The better SR algorithm is 
expected to show higher performance.   

Both LR and HR images contain significant staircase 
artifacts. This drawback was overcome by post-processing 
[10], which implements the BM3D [9]. By reconstructing 
the residual image by iterative filtering, the staircase 
artifact can be removed effectively due to the structure-
preserving properties of the BM3D filter. The details of the 
algorithm are presented in Table 2. The structural 
similarity SSIM [15] between the two consecutive 
iterations is selected as the stopping because the aim was 
to preserve the nonlocal structure. The BM3D post-
processing scheme was used after reconstructing the LR 
image, and then apply the SR technique was then applied; 
the algorithm is called SRTV+BM3D. Moreover, because 
the HR sensing matrices ( , )HR HRR G  can be obtained using 
(7), the reconstructed HR image of (SRTV+BM3D) can be 
refined further by BM3D post processing. This scheme is 
called SRTV+BM3D2 in Table 1. By iteratively removing 
the staircase artifact in both the low and high resolution 
images, the proposed SRTV+BM3D2 is expected to 
achieve the highest reconstruction performance.   

4. Experimental Results 

In this section, the effectiveness of the proposed idea of  

Table 1. Description of the reconstruction algorithms.

Algorithm Descriptions 

TV[6] Conventional TV recovery [6] based on 
KCS. 

SRTV* SR-assisted TV reconstruction: recover LR 
by TV [6], then use SR to obtain HR. 

SRTV+BM3D* Post-process recovered LR by BM3D before
using SR to obtain HR. 

SRTV+BM3D2*
Dual BM3D post-processing for SRTV: after 
recovery by SRTV+BM3D, apply post filter 
BM3D again to HR 

Proposed (*)

 
Table 2. Description of the post processing algorithm 
[10].  
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SRTV, and its variants, SRTV+BM3D and SRTV+BM3D2 
are validated by comparing the objective and subjective 
performance with TV [6], as listed in Table 1.  

4.1 Parameter Setting for the Experiment 
For parameter setting for a original (high) solution 

image of 2 2 , ( 256),n n n× =  the Kronecker compressive 
sensing measurements was obtained by HRR  and HRG  with 

a size, 2 2 ,n r n⎡ ⎤×⎢ ⎥  where r denotes an intended subrate 

of the HR image and ⋅⎡ ⎤⎢ ⎥  stands for ceiling operator. The 
HR compressive measurements were the same as the LR 
compressive measurements generated from the Gaussian 
matrices using the proposed approach, LRR  and ,LRG  at 

subrate 4r  with a size of 2 .n r n⎡ ⎤ ×⎢ ⎥  The reconstruction 

parameters were set up as 0.5, 0.05, 1λ ν μ= = =  for all 
the recovery algorithms and residual reconstructions as 
well. The stopping criteria for TV reconstruction is 

54 10−×  and for BM3D post-processing was 0.002,tol <  
and 10.σ =  All results were obtained by averaging five 
simulations. 

Table 3 compares the values of PSNR and the structure 
similarity index (SSIM) [16] with test images of size 
512×512 at various subrates from 0.05 to 0.025. Fig. 3 
presents all the test images. The proposed algorithm was 
compared with TVAL3 [18] with a block size of 64 and 
BCS-SPL-DDWT with a block size of 32 because the 
frame-based CS could not be used due to out of memory 
problems. The experimental environment was a computer 
with an Intel(R) Core(TM) i5 (3.3GHz) and 4G memory, 
running Windows 7 and Matlab 2012b.  

Table 3. Performance comparison of various algorithms in PSNR and SSIM. 

BCS-SPL[2] TVAL3[18] TV[6] SRTV* SRTV+BM3D* SRTV+BM3D2*Image Sub 
rate PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
0.05 25.38 0.739 22.78 0.616 25.23 0.705 27.06 0.756 28.10 0.786 28.87 0.777
0.10 28.03 0.804 25.80 0.706 28.06 0.770 30.14 0.829 30.88 0.846 32.21 0.838
0.15 29.89 0.842 28.08 0.773 29.71 0.810 32.14 0.874 32.42 0.876 34.06 0.873
0.20 31.35 0.864 29.73 0.820 31.06 0.839 33.55 0.903 33.31 0.892 35.15 0.897

Lena 

0.25 32.46 0.887 31.21 0.854 32.19 0.860 34.45 0.924 33.78 0.901 35.77 0.914
0.05 21.58 0.580 20.46 0.487 20.85 0.498 22.42 0.582 22.99 0.619 22.94 0.740
0.10 22.57 0.640 21.98 0.562 22.30 0.555 23.84 0.665 24.43 0.707 24.64 0.839
0.15 23.37 0.685 22.86 0.818 23.18 0.597 24.64 0.725 25.01 0.756 25.39 0.899
0.20 24.16 0.722 23.53 0.666 23.97 0.638 25.20 0.775 25.25 0.779 25.62 0.929

Barbara 

0.25 24.90 0.755 24.12 0.706 24.90 0.673 25.36 0.809 25.36 0.790 25.69 0.944
0.05 25.66 0.736 22.01 0.585 25.25 0.707 26.79 0.761 27.79 0.787 28.64 0.815
0.10 28.96 0.796 25.40 0.675 28.59 0.771 29.50 0.825 30.06 0.833 31.10 0.868
0.15 30.78 0.827 27.86 0.742 30.41 0.804 30.69 0.856 30.88 0.852 31.97 0.891
0.20 32.02 0.848 29.83 0.791 31.85 0.805 31.43 0.875 31.30 0.863 32.42 0.906

Peppers 

0.25 32.95 0.864 31.57 0.829 32.91 0.849 31.86 0.894 31.52 0.869 32.68 0.917
0.05 23.03 0.750 21.88 0.634 24.93 0.747 26.59 0.794 27.88 0.826 28.83 0.910
0.10 25.97 0.826 25.16 0.754 28.11 0.822 30.38 0.880 31.41 0.896 33.03 0.953
0.15 28.41 0.873 27.51 0.823 30.33 0.865 32.97 0.928 33.34 0.928 35.36 0.969
0.20 30.43 0.904 29.52 0.873 32.08 0.895 34.83 0.956 34.61 0.947 37.01 0.980

Camera-
man 

0.25 32.12 0.925 31.08 0.903 33.48 0.913 36.40 0.975 35.39 0.957 38.15 0.988
0.05 24.27 0.598 23.18 0.535 23.99 0.559 25.38 0.612 25.77 0.623 26.06 0.662
0.10 26.91 0.676 25.67 0.630 26.12 0.642 27.78 0.712 28.02 0.724 28.62 0.760
0.15 28.04 0.726 27.16 0.693 27.34 0.694 29.46 0.780 29.47 0.770 30.29 0.816
0.20 28.90 0.761 28.39 0.744 28.38 0.738 30.75 0.831 30.48 0.822 31.45 0.854

Goldhill 

0.25 29.67 0.792 29.37 0.782 29.29 0.772 31.64 0.865 31.11 0.840 32.19 0.881
0.05 22.97 0.586 21.46 0.515 22.53 0.547 23.98 0.604 24.39 0.621 24.74 0.642
0.10 25.25 0.665 24.02 0.613 24.75 0.628 26.49 0.708 26.94 0.724 27.72 0.720
0.15 26.65 0.717 25.63 0.680 26.16 0.684 28.26 0.781 28.52 0.786 29.59 0.776
0.20 27.77 0.756 26.98 0.731 27.40 0.729 29.48 0.832 29.43 0.822 30.59 0.811

Boats 

0.25 28.68 0.787 28.22 0.773 28.46 0.766 30.21 0.862 29.87 0.840 31.04 0.829
Average 27.44 0.764 26.08 0.710 27.46 0.729 29.12 0.806 29.32 0.809 30.39 0.853

Proposed(*)
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4.2 Results and Discussions 
As shown in Table 3, the SRTV, SRTV+BM3D and 

SRTV+BM3D2 algorithms outperformed the conventional 
method, TV [6], BCS-SPL-DDWT [2], and TVAL3 [18]. 
Moreover, the SRTV+BM3D2 showed the best 
performance in most cases. The results show that the 
proposed idea of sensing the LR with a high subrate shows 
better performance than the conventional CS. Even by 
applying a simple SR (e.g., bi-cubic) to the reconstructed 
LR image in the SRTV algorithm, the 1.5dB gain on 
average over the conventional KCS employing TV was 
still achieved [6]. With the structure preserving property of 
BM3D post-processing to the LR image, the 
SRTV+BM3D gives an additional gain of 0.3dB. By 
building the HR sensing matrix as in (7), it is possible to 
doubly apply BM3D post-processing to both LR and HR 
images in the proposed SRTV+BM3D2, which can offer up 
to 2.7dB gain (in the case of Cameraman image at subrate 
0.25) over the single application of the BM3D post-filter in 
SRTV+BM3D. In particular, the proposed SRTV+BM3D2 
algorithm demonstrated the best PSNR performance in 
most test images with a mean gain of 2.94dB and 1dB over 
the TV [6] and SRTV+BM3D, respectively.  

Because only a LR image was measured and a simple 
SR technique (e.g., bi-cubic) was used to generate the HR 
image, the HR image often suffers from loss of image 
details or texture (i.e., due to loss of high frequency 
components). In addition, the SR technique was reported 
to generate a smooth HR image and is quite effective in 
up-sampling a smoothed image [8]. Therefore, the 
proposed method performs the best with very smooth 
images, such as Peppers, Cameraman, and Goldhill. The 
conventional KCS is unable to capture and recover high 
frequency components well (e.g., edges or details) if it 
senses a very small number of measurements (i.e., at a 
very low subrate). Therefore, the reconstructed image of 
the conventional CS at a very low subrate loses the high 
frequency components and produces a very low quality 
reconstructed image, as already visualized in Fig. 1.  

Therefore, some high frequency information was 
discarded using the proposed HR sensing matrix, which 
corresponds to the sense LR at a high subrate. Because the 
CS reconstruction works well at a high subrate and the SR 
technique can provide some level of detail, even without 
post-processing in the SRTV algorithm, it can still improve 
the performance in complex textured images, such as the 
Lena and Boats images. Obviously, higher performance 
can be achieved with SRTV+BM3D and SRTV+BM3D2 

by exploiting the structures of the image via BM3D. The 
proposed algorithm can reconstruct both LR and HR 
images with high quality, as shown in Fig. 4 (Cameraman 
image at subrate 0.1). 

Table 4 lists the reconstruction time of the LR and HR 
images using various reconstruction algorithms. The 
reconstructed LR images could be obtained within 
approximately 3 seconds (in SRTV), 14 seconds (in 
SRTV+BM3D and SRTV+BM3D2) with and without 
BM3D processing. In addition, the computational 
complexity of the reconstructing HR images ranged from 4 
secs in SRTV to 16 sec in SRTV+BM3D, and 85 sec in 

SRTV+BM3D including the LR reconstruction time. 
Therefore, an appropriate reconstruction method can be 
chosen based on the computational capability of the 
decoder. As shown in Table 5, a very high performance 
LR image can be obtained using the proposed framework.  

In addition, the same conclusion can be drawn in terms  

Table 4. Reconstruction time (sec) of the LR and HR 
Lena image at a subrate 0.05 and 0.15. 

HR Reconstruction  LR ReconstructionAlgorithm 
0.05 0.15 0.05 0.15 

BCS-SPL[2] 51.65 24.98 - - 
TVAL3[18] 18.36 37.43 - - 

TV[6] 38.40 26.02 - - 
SRTV* 3.27 3.08 3.26 3.07 

SRTV+BM3D* 15.02 14.83 14.99 14.82 
SRTV+BM3D2* 85.12 85.70 15.08 14.96 

Proposed(*)
 

Table 5. Performance of the LR image with/without 
post processing BM3D in PSNR (dB). 

Subrate Algorithm 
0.05 0.10 0.15 0.20 0.25

w/o    BM3D 28.32 33.01 37.32 42.57 64.78Lena 
with  BM3D 30.08 34.65 38.63 43.24 52.38
w/o    BM3D 24.81 27.94 31.35 36.81 57.56Barbara 
with   BM3D 26.03 30.33 35.07 40.47 51.39
w/o    BM3D 29.00 34.36 38.66 43.54 65.86Peppers 
with   BM3D 31.32 36.16 39.72 43.82 52.46
w/o    BM3D 28.11 33.59 37.96 42.81 63.99Cameraman
with   BM3D 29.73 34.73 38.52 42.92 52.67
w/o    BM3D 26.73 30.49 34.15 38.92 64.43Goldhill 
with   BM3D 27.46 31.13 34.46 39.09 50.29
w/o    BM3D 25.58 29.90 34.25 39.91 62.57Boats 
with   BM3D 26.24 30.61 34.89 40.06 50.81

woBM3D (SRTV), wBM3D (SRTV+BM3D and SRTV+BM3D2)
 

 

 

Fig. 3. From Left to right and up to down are Lena, 
Barbara, Peppers, Cameramen, Goldhill and Boats test 
images of size 512x512. 
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of the visual quality performance of the reconstruction 
algorithms, as depicted in Fig. 5 for the Lena image. 
Obviously, the proposed algorithm produced the best 
visual quality with clearer textured regions (e.g., see 
Lena’s hair and her hat) and fewer staircase artifacts. 
However, the reconstructed HR loses some high frequency 
information (e.g., see the details of Lena’s hat, and 
blurring in Lena’s hair region). Moreover, the simple SR 
technique, such as like bi-cubic interpolation would also 
smooth the edges in the HR image. Therefore, some high 
frequency information, such as edges and detail, are lost in 
the reconstructed HR image. In general, higher recovery 

performance of the HR image is expected by the better 
performing SR method. Nevertheless, the task of better 
preserving the details will be undertaken in future work. 

5. Conclusion 

This paper proposed a novel multi-resolution 
Kronecker compressive sensing that allowed simple 
spatially scalable compressive imaging. The proposed 
scheme not only provided a high quality low resolution 
image but also significantly improved the reconstruction  

 

 
Low resolution image (256x256) High resolution image (512x512) 

Fig. 4. Reconstructed image by SRTV+BM3D2 at subrate 0.1 

 

   

Original 
 

TV[6], 28.06dB 
 

SRTV, 30.15dB 
 

   

 SRTV+BM3D, 30.88dB SRTV+BM3D2, 32.31dB 

Fig. 5. Visual quality comparison of several reconstruction algorithms at subrate 0.1 
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performance of the high resolution image, particularly with 
a small number of measurements. A future study will 
extend this sampling scheme further to obtain a scalable 
compressive sensing framework and exploit predictive 
coding between the base layers and enhancement layers. 
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