• Title/Summary/Keyword: Low Resolution

Search Result 2,607, Processing Time 0.032 seconds

Capacitive Sensing Circuit for Low Power and High Resolution

  • Jung, Seung-Min;Yeo, Hyeop-Goo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.692-695
    • /
    • 2011
  • This paper describes the possibility of a low-power, high-resolution fingerprint sensor chip. A modified capacitive detection circuit of charge sharing scheme is proposed, which reduces the static power dissipation and increases the voltage difference between a ridge and valley more than conventional circuit. The detection circuit is designed and simulated in 3.3V, $0.35{\mu}m$ standard CMOS process, 40MHz condition. The result shows about 35% power dissipation reduction and 90% improvement of difference between a ridge and valley sensing voltage. The proposed circuit is more stable and effective than a typical circuit.

  • PDF

Measurement of Large-amplitude and Low-frequency Vibrations of Structures Using the Image Processing Method (영상 처리 방법을 이용한 구조물의 큰 변위 저주파 진동 계측)

  • Kim, Ki-Young;Kwak, Moon K.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.3 s.96
    • /
    • pp.329-333
    • /
    • 2005
  • This paper is concerned with the measurement of low-frequency vibrations of structures using the image processing method. To measure the vibrations visually, the measurement system consists of a camera, an image grabber board, and a computer. The specific target installed on the structure is used to calculate the vibration of structure. The captured image is then converted into a pixel-based data and then analyzed numerically. The limitation of the system depends on the image capturing speed and the size of image. In this paper, we propose the methodology for the vibration measurement using the image processing method. The method enables us to measure the displacement directly without any contact. The current resolution of the vibration measurement is limited to sub centimeter scale. However, the frequency bandwidth and resolution can be enhanced by a high-speed and high-resolution image processing system.

A Novel Human Detection Scheme using a Human Characteristics Function in a Low Resolution 2D LIDAR (저해상도 2D 라이다의 사람 특성 함수를 이용한 새로운 사람 감지 기법)

  • Kwon, Seong Kyung;Hyun, Eugin;Lee, Jin-Hee;Lee, Jonghun;Son, Sang Hyuk
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.5
    • /
    • pp.267-276
    • /
    • 2016
  • Human detection technologies are widely used in smart homes and autonomous vehicles. However, in order to detect human, autonomous vehicle researchers have used a high-resolution LIDAR and smart home researchers have applied a camera with a narrow detection range. In this paper, we propose a novel method using a low-cost and low-resolution LIDAR that can detect human fast and precisely without complex learning algorithm and additional devices. In other words, human can be distinguished from objects by using a new human characteristics function which is empirically extracted from the characteristics of a human. In addition, we verified the effectiveness of the proposed algorithm through a number of experiments.

Low Resolution Near-Infrared Stellar Spectra Observed by CIBER

  • Kim, MinGyu;Lee, Hyung Mok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.76.2-76.2
    • /
    • 2016
  • We present near-infrared (0.8 - 1.8 microns) spectra of 63 bright (J_mag < 10) stars observed with Low Resolution Spectrometer (LRS) onboard the rocket-borne Cosmic Infrared Background Experiment (CIBER). Two Micron All Sky Survey (2MASS) photometry information is used to find cross-matched stars after reduction and extraction of the spectra. We identify the spectral types of observed stars by comparing with spectral templates from the Infrared Telescope Facility (IRTF) library. All the observed spectra are consistent with late F to M stellar spectral types, and we identify various infrared absorption lines. As our observations are performed above the Earth's atmosphere, our spectra are free from telluric contamination. Including HST/NICMOS and Cassini/VIMS, the spectral coverage has rarely been achieved in space, and the methods developed here can inform statistical studies with future low-resolution spectral measurements such as GAIA photometric and radial velocity spectrometer.

  • PDF

Speed and Position Estimation Method for PMSM with Low-Resolution Hall-Effect Sensors (저 분해능 홀센서를 이용한 영구자석 동기 전동기의 속도 및 위치 추정기법)

  • Ahn, H.J.;Lee, D.M.
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.114-115
    • /
    • 2014
  • This paper proposes a new speed and position estimation method for PMSM(Permanent Magnet Synchronous Motor) using low-resolution hall-effect sensors. In general, there are a variety of sensors to estimate rotor position for PMSM such as resolvers, and encoders. Position detection using hall-effect sensors that detect the flux of the rotor for rotor position is excellent method in terms of cost and space, but has low-resolution. To overcome this problem, this paper proposes a new speed and position estimation observer. The performance of the observer has been verified by simulations carried out using Matlab/Simulink.

  • PDF

Effects of the Subgrid-Scale Orography Parameterization and High-Resolution Surface Data on the Simulated Wind Fields in the WRF Model under the Different Synoptic-Scale Environment (종관 환경 변화에 따른 아격자 산악모수화와 고해상도 지면 자료가 WRF 모델의 바람장 모의에 미치는 영향)

  • Lee, Hyeon-Ji;Kim, Ki-Byung;Lee, Junhong;Shin, Hyeyum Hailey;Chang, Eun-Chul;Lim, Jong-Myoung;Lim, Kyo-Sun Sunny
    • Atmosphere
    • /
    • v.32 no.2
    • /
    • pp.103-118
    • /
    • 2022
  • This study evaluates the simulated meteorological fields with a particular focus on the low-level wind, which plays an important role in air pollutants dispersion, under the varying synoptic environment. Additionally, the effects of subgrid-scale orography parameterization and improved topography/land-use data on the simulated low-level wind is investigated. The WRF model version 4.1.3 is utilized to simulate two cases that were affected by different synoptic environments. One case from 2 to 6 April 2012 presents the substantial low-level wind speed over the Korean peninsula where the synoptic environment is characterized by the baroclinic instability. The other case from 14 to 18 April 2012 presents the relatively weak low-level wind speed and distinct diurnal cycle of low-level meteorological fields. The control simulations of both cases represent the systematic overestimation of the low-level wind speed. The positive bias for the case under the baroclinic instability is considerably alleviated by applying the subgrid-scale orography parameterization. However, the improvement of wind speed for the other case showing relatively weak low-level wind speed is not significant. Applying the high-resolution topography and land-use data also improves the simulated wind speed by reducing the positive bias. Our analysis shows that the increased roughness length in the high-resolution topography and land-use data is the key contributor that reduces the simulated wind speed. The simulated wind direction is also improved with the high-resolution data for both cases. Overall, our study indicates that wind forecasts can be improved through the application of the subgrid-scale orography parameterization and high-resolution topography/land-use data.

A study on DR image restoration using dual sensor (이중센서를 이용한 DR 영상 개선에 관한 연구)

  • 백승권;이태수;민병구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.725-728
    • /
    • 1988
  • Image restoration technique using dual sensor is presented in this paper. Digital Radiography image (1024xlO24) is obtained by conventional resolution sensor. We also obtain local DR image data by high resolution sensor. Two dimensional maximum entropy power spectrum estimation (2-D ME PSE) is applied to low resolution image and high resolution image for the purpose of the power spectrum estimation of each image. A class of linear algebraic restoration filter, parametric projection filter (PPF), is derived from the power spectrums of each image. It is shown that the noise energy may be considerably reduced through the PPF.

  • PDF

Spatial Resolution and Dynamic Range Enhancement Algorithm using Multiple Exposures (복수 노출을 이용한 공간 해상도와 다이내믹 레인지 향상 알고리즘)

  • Choi, Jong-Seong;Han, Young-Seok;Kang, Moon-Gi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.6
    • /
    • pp.117-124
    • /
    • 2008
  • The approaches to overcome the limited spatial resolution and the limited dynamic range of image sensors have been studied independently. A high resolution image is reconstructed from multiple low resolution observations and a wide dynamic range image is reconstructed from differently exposed multiple low dynamic range in es based on signal processing approach. In practical situations, it is reasonable to address them in a unified context because the recorded image suffers from limitations of both spatial resolution and dynamic range. In this paper, the image acquisition process including limited spatial resolution and limited dynamic range is modelled. With the image acquisition model, the response function of the imaging system is estimated and the single image of which spatial resolution and dynamic range are simultaneously enhanced is obtained. Experimental results indicate that the proposed algorithm outperforms the conventional approaches that perform the high resolution and wide dynamic range reconstruction sequentially with respect to both objective and subjective criteria.

Sub-Pixel Rendering Algorithm Using Adaptive 2D FIR Filters (적응적 2차원 FIR 필터를 이용한 부화소 렌더링 기법)

  • Nam, Yeon Oh;Choi, Ik Hyun;Song, Byung Cheol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.113-121
    • /
    • 2013
  • In this paper, we propose a sub-pixel rendering algorithm using learning-based 2D FIR filters. The proposed algorithm consists of two stages: the learning and synthesis stages. At the learning stage, we produce the low-resolution synthesis information derived from a sufficient number of high/low resolution block pairs, and store the synthesis information into a so-called dictionary. At the synthesis stage, the best candidate block corresponding to each input high-resolution block is found in the dictionary. Next, we can finally obtain the low-resolution image by synthesizing the low-resolution block using the selected 2D FIR filter on a sub-pixel basis. On the other hand, we additionally enhance the sharpness of the output image by using pre-emphasis considering RGB stripe pattern of display. The simulation results show that the proposed algorithm can provide significantly sharper results than conventional down-sampling methods, without blur effects and aliasing.

Methodological Study on Measurement of Hydrogen Abundance in Hydrogen Isotopes System by Low Resolution Mass Spectrometry

  • Lia, Jin-Ying;Shib, Lei;Hub, Shi-Lin
    • Mass Spectrometry Letters
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • China's rapid economic growth has resulted in significant environmental side effects. Therefore, China has been interested in reducing her dependence on foreign oil and gas by developing technologies needed for hydrogen, in addition to her increasing energy mix of nuclear and renewable energy form, such as solar and wind power. There are three isotopes of hydrogen, i.e. protium (P or H), deuterium (D), and tritium (T). Both deuterium and tritium are important materials in nuclear fuel cycle industry. Tritium is one of the critical radioactive nuclides. Planning for and implementing contamination control as a part of normal operation and maintenance activities is an important function in any hydrogen facility, especially tritium facility. The development of hydrogen isotopes analysis is the key issues in this area. Mass spectrometry (MS) with medium (about 600) and high resolution (> 1,400) is commercially available; however, the routine analysis of hydrogen isotopes is done with low-resolution MS (< 200) in China. This paper summarizes the progress of MS measurement technology for hydrogen isotope abundance in China, focusing on our lab's research program and technical status. An analyzing method has been introduced for accurate measurement of tritium abundance in the H.D.T system by low resolution MAT-253 MS. The quotient of compression ratio coefficient is determined by building up equipment for laboratory-scale preparation of secondary standard gases and by considering the difference in sensitivity between hydrogen isotopes. The results show that the measured value is reproducible within the relative error range of 0.8% for gas samples of different tritium abundance.