• Title/Summary/Keyword: Low Pressure Combustion

Search Result 436, Processing Time 0.027 seconds

The Development of LPP Combustor for ESPR

  • Kinoshita, Yasuhiro;Oda, Takeo;Kobayashi, Masayoshi;Ninomiya, Hiroyuki;Kimura, Hideo;Hayashi, Shigeru;Yamada, Hideship;Shimodaira, Kazuo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.453-459
    • /
    • 2004
  • An axially staged combustor equipped with an LPP combustion system and CMC liner walls has been investigated for stable combustion and low NOx emissions for the ESPR project. Several fuel injectors were designed and manufactured for the LPP burner, and single sector combustor tests were conducted to evaluate fundamental combustion characteristics such as emissions, instabilities, auto-ignition, and flash back at typical operating conditions from idle to Mn 2.2 cruise. The latest test results showed that the LPP burner had a good potential for the low NOx target. It was also found that the NOx emission level was greatly affected by a distortion in the air flow velocity field upstream of the LPP burner due to the diffuser and fuel feed arm. The CMC material was investigated to apply for the high temperature and low NOx combustor. Annular combustor liner walls were manufactured with the CMC material, and they have been tested at low pressure conditions to evaluate the soundness of the material and the mounting and seal system. This paper reports the latest research activities on the LPP combustion system and CMC liner walls for the ESPR project.

  • PDF

Observation of flame oscillation with changing combustor pressure (연소실 압력변동에 따른 화염 진동현상의 관찰)

  • Kim, Jong-Ryul;Choi, Gyung-Min;Kim, Duck-Jool
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.275-280
    • /
    • 2005
  • At previous study, nitrogen oxide emission was decreased with decreasing pressure index. This tendency was explained by the flame oscillation with changing combustor pressure. In this study, the characteristics of flame oscillation with changing combustor pressure were investigated. It can be found that flame length is extended and flame width is narrowed by decreasing combustor pressure. It can be observed that pilot flame and the surrounding air converge on the inner flame in the $P^{\ast}{\geqq}1$ conditions and that surrounding air and flow pattern was widely dispersed in the $P^{\ast}<1$ conditions. In the respect of average flame length, low fluctuation was shown in the $P^{\ast}<1$ conditions. On the other hands, large fluctuation was shown in the $P^{\ast}<1$ conditions. Flame oscillation are observed from $P^{\ast}=$ 0.98 in the condition of $P^{\ast}<1$ and the amplitude of flame oscillation becomes larger when $P^{\ast}$ is lowered. These results demonstrate that low NOx phenomenon was caused by flame oscillation with changing combustor pressure.

  • PDF

Kinetic and Thermodynamic Features of Combustion of Superfine Aluminum Powders in Air

  • Kwon, Young-Soon;Park, Pyuck-Pa;Kim, Ji-Soon;Gromov, Alexander;Rhee, Chang-Kyu
    • Journal of Powder Materials
    • /
    • v.11 no.4
    • /
    • pp.308-313
    • /
    • 2004
  • An experimental study on the combustion of superfine aluminum powders (average particle diameter, a$_{s}$: ∼0.1 ${\mu}{\textrm}{m}$) in air is reported. The formation of aluminum nitride during the combustion of aluminum in air and the influence of the combustion scenario on the structures and compositions of the final products are in the focus of this study. The experiments were conducted in an air (pressure: 1 atm). Superfine aluminum powders were produced by the wire electrical explosion method. Such superfine aluminum powder is stable in air but once ignited it can burn in a self-sustaining way due to its low bulk: density (∼0.1 g/㎤) and a low thermal conductivity. During combustion, the temperature and radiation were measured and the actual burning process was recorded by a video camera. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and chemical analysis were performed on the both initial powders and final products. It was found that the powders, ignited by local heating, burned in a two-stage self-propagating regime. The products of the first stage consisted of unreacted aluminum (-70 mass %) and amorphous oxides with traces of AlN. After the second stage the AlN content exceeded 50 mass % and the residual Al content decreased to ∼10 mass %. A qualitative discussion is given on the kinetic limitation for AlN oxidation due to rapid condensation and encapsulation of gaseous AlN.N.

Diesel Combustion Strategies Effect on Exhaust Emissions and Hydrocarbon Species (디젤 연소 전략에 따른 배기가스 및 탄화수소 종 분석)

  • Han, Man-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.7
    • /
    • pp.759-765
    • /
    • 2012
  • This study investigates the effect of diesel combustion strategies on exhaust emissions and hydrocarbon species emissions for a 1.7 L common rail direct injection diesel engine at 1500 rpm and 3.9 bar BMEP. The first strategy is a method to adopt no EGR with a split injection composed of pilot and main injection (split injection). The second is to adopt a moderate EGR rate with main injection only (single-1). The third is to use a high level of EGR and main injection with rail pressure increase, $i.e.$ low-temperature diesel combustion (single-2). Split injection and single-1 showed a renowned phenomenon of a PM-NOx trade-off, whereas single-2 was observed of a PM-NOx trade-off to reduce PM and NOx simultaneously. HC speciation results show that the split injection produced the least amount of HC species, regardless of the carbon number bin, followed by single-1 and single-2. The ratios of methane, acetylene, and CO to THC increased as a combustion A/F ratio is richer due to reduced oxygen content in the vicinity of the combustion zone, thus enhancing pyrolysis.

Reduction of combustion instability using flame holder integrated injector (통합형 연료분사장치를 통한 연소불안정 저감)

  • Hwang, Yong-Seok;Lee, Jong-Guen;Park, Ik-Soo;Choi, Ho-Jin;Jin, Yu-In;Yoon, Hyun-Gull;Lim, Jin-Shik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.432-437
    • /
    • 2010
  • A new device injecting secondary fuel behind flameholder was invented and tested in order to reduce low frequency combustion instability of combustor using V-gutter flameholder. Specially designed combustion device could make large combustion instability up to 180 dB successfully, and newly invented device made a success to reduce 110~120Hz low frequency pressure pulsation up to 84%. It was found that the fuel flow rate of secondary fuel supplying behind flameholder was the only parameter which dominates reduction of instability. It is considered that stabilized flame with sufficient secondary fuel can lead to break the connection between combustion system and acoustic system due to independence of flame from fluctuation of main fuel resulted from synchronization with acoustic wave.

  • PDF

The Characteristics of Engine Noise and its Reduction Techniques (엔진 소음, 진동 특성 및 개선방안)

  • 이재갑;여승동
    • Journal of KSNVE
    • /
    • v.7 no.4
    • /
    • pp.689-700
    • /
    • 1997
  • There are many difficulties in designing the engine structure properly due to the strong conflicts between NVH characteristics and the high performance, light weight and low product cost. Many feasible noise reduction techniques should be carefully incorporated to meet such stringent noise requirements. It is also required that the engine development be carried out by introducing concurrent engineering, in which the analysis and test database are usefully applied to the detail designs from the 1st stage. This paper reviews the significance of the noise characteristics of the structure elements in relation to the combustion pressure. The mechanisms of the crank shaft rumbling, which is the main source having the bad influence on the sound quality, are also explained. The influences of dynamic behavior of engine structure on its noise are investigated, followed by discussions on experimental results of the features necessary for the design of low noise engine concepts.

  • PDF

Synthesis of nanometric tungsten powders by solid state combustion method (고상연소반응법에 의한 나노텅스텐분말의 합성)

  • H.H. Nersisyan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.93-93
    • /
    • 2003
  • Tungsten and tungsten heavy alloys have widespread application as radiation shielding devices and heavy duty electrical contacts. High density and good room temperature mechanical properties have generated interest in evaluating tungsten and tungsten alloys as kinetic energy penetrators against armor. Nowdays ultra fine-grained tungsten powders are in great interest because higly dense structures can be obtained at low temperature, pressure and lower sintering time. Several physical md chemical methods are available for the synthesis of nanometric metal Powders: ball milling, laser abalation, vapor condensation, chemical precipitation, metallic wire explosion i.e. However production rates of the above mentioned methods are low and further efforts are needed to find out large-scale synthesis methods. From this point of view solid state combustion method ( known as SHS) represents undoubted interest.

  • PDF

Performance Test of 5MW Gas Turbine Engine Combustor (5MW 발전용 가스터빈 엔진 연소기 성능시험)

  • Park, Poo-Min;Kim, Hyung-Mo;Choi, Young-Ho;Yang, Soo-Seok;Chon, Mu-Hwan
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.4
    • /
    • pp.37-46
    • /
    • 2008
  • Performance test of 5MW class gasturbine combustor was carried out at combustor test facility of KARI(Korea Aerospace Research Institute). The combustor is dry low NOx type premixed combustor and fuel is natural gas. The characteristics of combustor were measured including emission, pressure pulsation and exit temperature distribution. Optimum operation point of combustor was found by changing parameters like fuel ratio between pilot and main burner. The test result showed that the combustor performance is sufficient to satisfy the gasturbine system requirement.

  • PDF

Characteristics of thermoacoustic oscillation in ducted flame burner (관형 연소기의 열 음향학적 특성에 관한 실험적 연구)

  • 조상연;이수갑
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.985-991
    • /
    • 1997
  • Combustion instability is a common phenomenon in a ducted flame burner and is known as accompanying low frequency oscillation. This is due to the interaction between unsteady heat release rate and sound pressure field, that is, thermoacoustic feedback. In Rayleigh criterion, combustion instability is triggered when the heat addition is in phase with acoustic oscillation. A Rijke type burner with a pre-mixed flame is built for investigating the effect of Reynolds number and equivalence ratio on thermoacoustic oscillation. The results suggest that the frequency of max, oscillation is dependent on Reynolds number and equivalence ratio whereas its magnitude is not a strong function of these two parameters.

  • PDF

SPRAY CHARACTERISTICS OF DIRECTLY INJECTED LPG

  • Lee, S.W.;Y. Daisho
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.239-245
    • /
    • 2004
  • It has been recognized that alternative fuels such as Liquid Petroleum Gas (LPG) show less polluting combustion characteristics than diesel fuel. Furthermore, engine performance is expected to be nearly equal to that of the diesel engine if direct-injection stratified-charge combustion of the LPG can be adopted in the spark-ignition engine. However, spray characteristics of LPG are quite different from those of diesel fuel. understanding the spray characteristics of LPG and evaporating processes are very important for developing efficient and low emission LPG engines optimized in fuel injection control and combustion processes. In this study, the LPG spray characteristics and evaporating processes were investigated using the Schlieren and Mie scattering optical system and single-hole injectors in a constant volume chamber. The results show that the mixture moves along the impingement wall that reproduced the piston bowl and reaches in ignition spark plug. LPG spray receives more influence of ambient pressure and temperature significantly than that of n-dodecane spray.