• Title/Summary/Keyword: Low Mach number

Search Result 136, Processing Time 0.02 seconds

FLOW ANALYSIS OF THE ON-BOARD SYSTEM FOR THE AIR SUPPLY TO THE PAYLOAD FAIRING OF A LAUNCH VEHICLE (발사체 탑재물 페어링 내부 공기 공급을 위한 탑재 시스템 유동 해석)

  • Ok H.;Kim Y.;Kim I.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.269-273
    • /
    • 2005
  • The on-board system for the air supply to the payload fairing(PLF) of a launch vehicle using both high and low pressure air was designed. The design concept was obtained from the CFD analysis of a Russian interstage air supply system, and a collector was adopted to expand the high pressure air. To verify that the on-board system would work as designed, a simplified axisymmetric computational model was made and a CFD analysis was also performed. It was found that the flow ejected from the hole of the collector expands to the Mach number of 4 and is soon retarded due to the action of viscosity. It was also found that a small gap between the low pressure duct and equipment bay wall can cause large velocity in PLF over the velocity requirement and no gap should be allowed in the design.

  • PDF

Experimental Study on Stream Turbine Cascade Flow (증기터빈 익렬유동에 관한 실험적 연구)

  • 권순범;윤의수;김병지
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2177-2183
    • /
    • 1994
  • The rapid expansion or condensible gas such as moist air of steam gives rise to nonequilibrium condensation. As a result of irreversibility of condensation process in the supersonic cascade flow of low pressure steam turbine, the entropy of the flow is increased, and the efficiency of the turbine is decreased. In the present study, to investigate the flow of moist air in 2-dimensional cascade made as the configuration of the tip section of the last actual steam turbine moving blade, the static pressure at both sides of pressure and suction of blade are measured by static pressure taps and the distribution of Mach number on both surfaces of the blade are obtained by using the measured static pressure. Also, the flow field is visualized by a schlieren system. From the experimental results, the effects of the stagnation temperature and specific humidity on the flow properties in a 2-dimensional stationary cascade of a practical steam turbine blade are clearly identified.

Turbulent Flow Simulations on 2-Dimensional Ground Effect Part II. Study on the Effects of Ground Boundary Conditions (2차원 지면효과에 대한 난류 유동장 해석 Part II. 지면경계 조건의 영향에 대한 연구)

  • Kim, Yoon-Sik;Lee, Jae-Eun;Kim, Eu-Gene;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.8
    • /
    • pp.670-676
    • /
    • 2007
  • A comparative study on ground boundary conditions for the airfoil in ground effect has been carried out. The objective of the present study is to clarify effects of the ground boundary conditions so that it will be helpful to analyse results of wind tunnel tests using the fixed ground board or the image method. A low Mach number preconditioned Navier-Stokes solver using the overlap grid method has been applied. It has been turned out that results with the symmetric boundary condition are almost the same to those with the moving boundary condition. Results with the fixed ground boundary show discrepancy to those with the moving boundary condition when flow separation on the ground board takes place.

Prediction of Dynamic Stability Derivatives Using Unsteady Euler Equations (비정상 Euler 방정식을 이용한 동안정 미계수 예측)

  • Park Soo Hyung;Kim Yoonsik;Kwon Jang Hyuk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.78-84
    • /
    • 2001
  • A dual-time stepping algorithm combined with a parallelized multigrid DADI method is presented to predict the dynamic damping coefficients. The Basic Finner model is chosen to validate the prediction capability of the present unsteady Euler method. The linearity of the pitch- and roll-damping coefficients is shown in the low angular rates and the interesting large drop and stiff increment in transonic region for roll-damping coefficients are explained in detail. Through the analysis for the pressure distributions at Mach number 1.0 to 1.2, the sudden drop results from the normal shock and the stiff increment of roll-damping reflects the transition of the normal shock to the oblique shock. The results also show that the Euler equations can give the damping coefficients with a comparable accuracy.

  • PDF

A High Resolution Scheme for Cavitating Flow

  • Shin B. R.;Oh S. J.;Obayashi S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.169-177
    • /
    • 2005
  • A high resolution scheme for solving gas-liquid two-phase flows with cavitation is described. This scheme uses the curvilinear coordinate grid and solves the density based momentum equations for mixture of gas-liquid medium with a preconditioning method to treat both compressible and incompressible flow characteristics. The present preconditioned method is based on the Runge-Kutta explicit finite-difference scheme, and is improved by using the diagonalization, the flux difference splitting and the MUSCL-TVD schemes to save computational effort and to increase stability and resolvability, especially at gas-liquid contact surfaces. A homogeneous equilibrium cavitation model is used to treat the gas-liquid two-phase medium in cavitating flow as a locally homogeneous pseudo-single-phase medium. Therefore, it is easy to solve cavitating flow, including wave propagation, large density changes and incompressible flow characteristic at low Mach number. Some numerical results obtained by the present scheme are shown.

  • PDF

TWO DIMENSIONAL SIMULATION OF UNSTEADY CAVITATING FLOW IN A CASCADE

  • Kajishima T.;Ohta T.;Shin B. R.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.179-182
    • /
    • 2005
  • We have developed a numerical scheme to reproduce the unsteady flows with cavitation by the finite-difference method. The evolution of cavitation is represented by the source/sink of vapor phase in the incompressible liquid flow. The pressure-velocity coupling is based on the fractional-step method for incompressible fluid flows, in which the compressibility is taken into account through the low Mach number assumption. We applied our method for the cavitating flows in a two-dimensional cascade, which approximates the portion near the tip of inducer in liquid-fuel engine. Particular attention was focused on the influence of turbulence model in this report. Using an eddy viscosity model, although it was not an optimized one for our purpose, the agreement with the experimental observation was improved.

  • PDF

Temperature Preconditioning for Improving Convergence Characteristics in Calculating Low Mach Number Flows, I: Euler Equations (저속 유동 계산의 수렴성 개선을 위한 온도예조건화 I: 오일러 방정식)

  • Lee, Sang-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.12
    • /
    • pp.1067-1074
    • /
    • 2007
  • A temperature preconditioning that modulates the derivative of density with respect to temperature is proposed to improve the convergence characteristics of the preconditioned Euler equations. Flows in a two-dimensional channel with a 10% circular bump in the middle of the channel were calculated at different speeds. The numerical dissipation terms of the Roe’s FDS scheme according to the temperature preconditioning are derived. It is shown that the temperature preconditioning accelerates convergence of the preconditioned Euler equations.

A Numerical Study on the Dynamic Behaviors of Single Vortex in a $CH_4/Air$ Diffusion Flame with Addition of $CO_2$ ($CH_4/Air$ 확산화염에 $CO_2$ 첨가에 따른 단일 와동의 동적 거동에 관한 수치해석)

  • Hwang, Chul-Hong;Oh, Chang-Bo;Lee, Dae-Yup;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.68-75
    • /
    • 2002
  • The dynamic behaviors of the single vortex and flame-vortex interaction in a $CH_4/Air$ diffusion flame with addition of $CO_2$ were investigated numerically. The numerical method was based on a predictor-corrector for low Mach number flow. A two-step global reaction mechanism was adopted as a combustion model. Through comparison of results by effect of $CO_2$ added either on the fuel or oxidizer side, it was found that the growth of single vortex and entrainment of surrounding fluid by $CO_2$addition on the fuel side are larger than those by $CO_2$ addition on oxidizer side. Also, when $CO_2$ is added on fuel side, flame-vortex interaction becomes more significant than on air side.

  • PDF

Experimental Study of Influence of Nozzle Design on Removal of Melted Materials in Laser Cutting Process (레이저 절단가공에서 노즐설계가 용융물질 제거에 미치는 영향에 관한 실험적 연구)

  • Son, Sang-Hyuk;Lee, Seok-Joon;Lee, Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.33-38
    • /
    • 2012
  • An experimental study was carried out to observe the characteristics of impingement of assist gas from a rectangular supersonic nozzle on kerf surface in laser machining. A micro-scale supersonic (Mach number 2.0) rectangular nozzle system was designed and fabricated for the purposes, and hot tests of the performance of the nozzle system was proceeded in the ITI corporation laboratory. For various related parameters such as laser powers, nozzle pressures and cutting speeds, the quality of the frontal view of cut edge surfaces was observed by a microscope. In the study, it was shown that the application of the present micro-rectangular supersonic nozzle in an off-axis configuration made it possible to cut a mild steel, by combinations of relatively low laser - powers, large standoff distances, and assist gas with no oxygen, which was not achieved by conventional laser cutting processes.

The Study of Aerodynamic Characteristics for the Ram-jet Projectile (렘제트탄의 공기역학적 특성 연구)

  • Park S. J.;Shin P. K.;Lee T. S.;Kim K. R.;Park J. H.;Kim Y. G.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.751-754
    • /
    • 2002
  • The SFU(Solid Fuel Ram-Jet) propulsion is attractive for projectiles because of the combination of high propulsive performance and low system complexity more than conventional projectiles. The Objective of this research was to characterize the inlet aerodynamic characteristics (centerbody & pilot type) in SFRJ. Diffuser static pressure & combustion chamber pressure was tested and the AoA was changed $0^{\circ}\;and\;4^{\circ}$ at Mach number of 3.0 for performance estimate. The performance study of inlet was carried out with the Schlieren system and Supersonic cold-flow system. A Computational fluid dynamic solution is applied internal flow of inlet and the solutions are compared with experimental results.

  • PDF