• Title/Summary/Keyword: Low Impact

Search Result 3,895, Processing Time 0.026 seconds

Application of Time-Frequency Analysis Methods to Loose Part Impact Signal (금속파편 감시 시스템에 대한 시간-주파수 해석 적용 연구)

  • 박진호;이정한;김봉수;박기용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.361-364
    • /
    • 2003
  • The safe operation and reliable maintenance of nuclear power plants is one of the most fundamental and important tasks. It is known that a loose part such as a disengaged and drifting metal inside of reactor coolant systems might lead to a serious damage because of their impact on the components of the coolant system. In order to estimate the impact position of a loose par, three accelerometers attached to the wall of the coolant system have been used. These accelerometers measure the vibration of the coolant system induced by loose part impact. In the conventional analysis system, the low pass filtered version of the vibration data was used for the estimation of the position of a loose part. It is often difficult to identify the initial point of the impact signal by using just a low passed time signal because the impact wave is dispersed during propagation into the sensor. In this paper, the impact signal is analysed by use of various time frequency methods including the short time Fourier transform(STFT), the wavelet transform, and the Wigner-Vill distribution for finding a convenient way to identify the starting point of a impact signal and their advantages and limits are discussed.

  • PDF

The development of land use planning technique applying low impact development and verifying the effects of non-point pollution reduction : a case study of Sejong city 6 district (저영향개발(LID)을 적용한 토지이용계획 기법 개발 및 적용효과 분석 : 세종시 6생활권을 대상으로)

  • Kang, Ki-Hoon;Lee, Kyung-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.548-553
    • /
    • 2017
  • The aim of this study was to develop a low impact development design technique that can be applied in the land use planning stage and verify quantitatively the effects of non-point pollution reduction. For this purpose, the low impact development design elements that can be applied in the land use planning stage were derived and applied to an actual site, and the non-point pollution reduction effect was analyzed using the LIDMOD2 program. The analysis showed that the permeability rate of the land use plan using low impact development decreased by 19.8% compared to the existing land use plan. In addition, annual surface runoff decreased by 19.0% and annual infiltration increased by 164.1%. In the case of non-point pollution, the annual loading, T-N, T-P, and BOD decreased by 18.7 ~ 22.8%. Therefore, compared to the existing land use plan, the land use plan using low impact development has a considerably large effect of reducing the non-point pollution without changing the floor area according to each application. Therefore, to maximize the reduction effect of non-point pollution, it will be necessary to establish a related plan by applying the low impact development technique from the land use planning stage to the existing LID facility-oriented plan.

Impacts of Marketing Capabilities on Competitive Advantage and Business Performance: Application of IPMA

  • CHAO, Meiyu;SEO, Min Kyo;KIM, Jong Rae
    • The Korean Journal of Franchise Management
    • /
    • v.13 no.1
    • /
    • pp.19-33
    • /
    • 2022
  • Purpose: Based on the resource-based view and the competitive advantage theory, the study views marketing capabilities (product, pricing, delivery/inventory, and promotional support) as sources of competitive advantage (differentiation advantage and low-cost advantage) and examines their impacts on competitive advantage, which in turn, will influence non-business and business performance. Research design, data and methodology: Data were collected from 149 representatives of franchising companies in South Korea and analyzed with SmartPLS 3.3.7. Results: First, promotional support and product have a significant impact on differentiation advantage. Second, pricing and promotional support have a significant impact on low-cost advantage. Third, differentiation advantage has an influence on non-financial and financial business performance. Fourth, low-cost advantage has an impact on non-financial performance but has no significant direct impact on financial performance. Fifth, non-financial performance is related to financial performance. Finally, the result of IPMA shows that importance and performance values of exogeneous variables are different depending on firm size. Conclusions: The findings suggest that franchisors should focus on different marketing capabilities depending on their strategic focus and objectives. Finally, the findings based on an IPMA suggest that small companies perceive low-cost advantage as important, while their counterparts do not. Several theoretical and managerial implications are offered.

Occupant Neck Injury Assessment Caused by Backward Movement of a Preceding Vehicle at a Low Impact Velocity (선행 차량의 후진에 의한 저속 충돌 시 탑승자 경추 상해에 대한 연구)

  • Kim, Seongjin;Jeon, Woojung;Park, Woosik;Seo, Youngil;Son, Kwon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.66-73
    • /
    • 2013
  • This study assesses neck injury of occupants in a real traffic accident case that a preceding vehicle moved backward and impacted a parked vehicle at a low velocity. This case is different from a case of whiplash injury caused by rear impact on vehicle. The impact velocity was estimated from damages of the two vehicle bumpers and the displacement of the parked vehicle was also estimated from CCTV images. MADYMO simulation was performed based on the vehicle specifications and investigation report. The comparison of neck flexion moments with the corresponding injury criteria revealed that occupants of the parked vehicle might have hardly neck injury.

Evaluation of the Residual Strength of CFRP Composite Pressure Vessel After Low Velocity Impact (CFRP 복합재압력용기의 충격후 잔류강도저하특성 평가)

  • Park, Jae-Beom;Kim, Dong-Ryun;Hwang, Tae-Kyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.439-442
    • /
    • 2009
  • In this study, the residual strength of CFRP filament winding pressure vessel after low velocity impact was evaluated quantitatively. After impact test, the pressure vessel was sectioned to produce 25 mm-wide ring specimen and the bursting pressure of this specimen was measured. A finite element model was also fabricated to investigate the deformation and stress distribution characteristics of the impacted CFRP vessel. The degradation of the residual strength along with the increase of impact energy was successfully measured and reviewed.

  • PDF

The Impact of COVID-19, Day-of-the-Week Effect, and Information Flows on Bitcoin's Return and Volatility

  • LIU, Ying Sing;LEE, Liza
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.11
    • /
    • pp.45-53
    • /
    • 2020
  • Past literatures have not studied the impact of real-world events or information on the return and volatility of virtual currencies, particularly on the COVID-19 event, day-of-the-week effect, daily high-low price spreads and information flow rate. The study uses the ARMA-GARCH model to capture Bitcoin's return and conditional volatility, and explores the impact of information flow rate on conditional volatility in the Bitcoin market based on the Mixture Distribution Hypothesis (Clark, 1973). There were 3,064 samples collected during the period from 1st of January 2012 to 20th April, 2020. Empirical results show that in the Bitcoin market, a daily high-low price spread has a significant inverse relationship for daily return, and information flow rate has a significant positive relationship for condition volatility. The study supports a significant negative relationship between information asymmetry and daily return, and there is a significant positive relationship between daily trading volume and condition volatility. When Bitcoin trades on Saturday & Sunday, there is a significant reverse relationship for conditional volatility and there exists a day-of-the-week volatility effect. Under the impact of COVID-19 event, Bitcoin's condition volatility has increased significantly, indicating the risk of price changes. Finally, the Bitcoin's return has no impact on COVID-19 events and holidays (Saturday & Sunday).

Low-Velocity Impact Analysis and Contact Law on Composite Laminates (복합적층판에 대한 저속충격해석과 접촉법칙)

  • 최익현
    • Composites Research
    • /
    • v.16 no.1
    • /
    • pp.50-57
    • /
    • 2003
  • Usually many researchers have used the modified Hertzian contact law or experimental static indentation law to analyze impact response of composite laminates subjected to the low-velocity impact. In this study, physical meaning of the method using the laws was investigated and the difference between the analytical results obtained using the laws was also investigated. Furthermore parametric study on contact constant and exponent in the contact law was performed. Finally it was shown that a linearized contact law can be well applied to low-velocity impact response analysis of composite laminates. If this concept is used, commercial finite element software can be used to solve impact problem without making any auxiliary code.

Optimization of safety factor by adaptive simulated annealing of composite laminate at low-velocity impact

  • Sidamar, Lamsadfa;Said, Zirmi;Said, Mamouri
    • Coupled systems mechanics
    • /
    • v.11 no.4
    • /
    • pp.285-295
    • /
    • 2022
  • Laminated composite plates are utilized extensively in different fields of construction and industry thanks to their advantages such as high stiffness-to-weight ratio. Additionally, they are characterized by their directional properties that permit the designer to optimize their stiffness for specific applications. This paper presents a numerical analysis and optimization study of plates made of composite subjected to low velocity impact. The main aim is to identify the optimum fiber orientations of the composite plates that resist low velocity impact load. First, a three-dimensional finite element model is built using LS DYNA computer software package to perform the impact analyses. The composite plate has been modeled using solid elements. The failure criteria of Tsai-Wu's criterion have been used to control the strength of the composite material. A good agreement has been found between the predicted numerical results and experimental results in the literature which validate the finite element model. Then, an Adaptive Simulated Annealing (ASA) has been used to optimize the response of impacted composite laminate where its objective is to maximize the safety factor by varying the ply angles. The results show that the ASA is robust in the sense that it is capable of predicting the best optimal designs.

Nonlinear dynamic response of axially moving GPLRMF plates with initial geometric imperfection in thermal environment under low-velocity impact

  • G.L. She;J.P. Song
    • Structural Engineering and Mechanics
    • /
    • v.90 no.4
    • /
    • pp.357-370
    • /
    • 2024
  • Due to the fact that the mechanism of the effects of temperature and initial geometric imperfection on low-velocity impact problem of axially moving plates is not yet clear, the present paper is to fill the gap. In the present paper, the nonlinear dynamic behavior of axially moving imperfect graphene platelet reinforced metal foams (GPLRMF) plates subjected to lowvelocity impact in thermal environment is analyzed. The equivalent physical parameters of GPLRMF plates are estimated based on the Halpin-Tsai equation and the mixing rule. Combining Kirchhoff plate theory and the modified nonlinear Hertz contact theory, the nonlinear governing equations of GPLRMF plates are derived. Under the condition of simply supported boundary, the nonlinear control equation is discretized with the help of Gallekin method. The correctness of the proposed model is verified by comparison with the existing results. Finally, the time history curves of contact force and transverse center displacement are obtained by using the fourth order Runge-Kutta method. Through detailed parameter research, the effects of graphene platelet (GPL) distribution mode, foam distribution mode, GPL weight fraction, foam coefficient, axial moving speed, prestressing force, temperature changes, damping coefficient, initial geometric defect, radius and initial velocity of the impactor on the nonlinear impact problem are explored. The results indicate that temperature changes and initial geometric imperfections have significant impacts.

A Study on Frequency Characteristics of Impact Induced Damage Signals of Composite Laminates as the Incident Angle of an FBG sensor (복합재 충격손상신호의 FBG센서 입사각도에 따른 주파수분포 특성에 관한 연구)

  • Bang, Hyung-Jun;Song, Ji-Yong;Kim, Chun-Gon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.235-239
    • /
    • 2005
  • In this research, we investigated the frequency characteristic of low-velocity impact induced damage signals on graphite/epoxy composite laminates using high-speed fiber Bragg grating(FBG) sensor system. Appling the FBG sensors to damage assessment, we need to study the response of FBG sensors as the damage signals of the different incident angles because FBG shows different directional sensitivity. In order to discriminate an impact induced damage signal from that of undamaged case, drop impacts with different energies were applied to the composite panel with different incident angle to the FBG sensor. Finally, detected impact signals were compared using frequency distributions of wavelet detail components in order to find distinctive signal characteristics of composites delamination.

  • PDF