• 제목/요약/키워드: Low Impact

검색결과 3,924건 처리시간 0.033초

탄소저감요소를 적용한 건설재료의 환경영향평가 비교 연구 - 콘크리트 제품 생산단계에서의 지구온난화 영향을 중심으로- (The Comparative Study on the Environmental Impact Assessment of Construction Material through the Application of Carbon Reducing Element - Focused on Global Warming Potential of Concrete Products-)

  • 조수현;채창우
    • KIEAE Journal
    • /
    • 제15권1호
    • /
    • pp.147-154
    • /
    • 2015
  • Environmental impact assessment techniques have been developed as a result of the worldwide efforts to reduce the environmental impact of global warming. By using the quantification method in the construction industry, it is now possible to manage the greenhouse gas is to systematically evaluate the impact on the environment over the entire construction process. In particular, the proportion of greenhouse gas emissions at the production stage of construction material occupied is high, and efforts are needed in the construction field. In this study, intended for concrete products for the construction materials, by using the LCA evaluation method, we compared the results of environmental impact assessment and carbon emissions of developing products that have been applied low-carbon technologies compared to existing products. As a result, by introducing a raw material of industrial waste, showed carbon reduction. Through a comparison of the carbon emission reduction effect of low-carbon technologies, it is intended to provide academic data for the evaluation of greenhouse gases in the construction sector and the development of low-carbon technologies of the future.

NDE of Low-Velocity Impact Damage in GFRP Using Infrared Thermography Techniques

  • Kim, Ghiseok;Lee, Kye-Sung;Hur, Hwan;Kim, Sun-Jin;Kim, Geon-Hee
    • 비파괴검사학회지
    • /
    • 제35권3호
    • /
    • pp.206-214
    • /
    • 2015
  • In this study, low-velocity impact damage (LVID) in glass fiber reinforced plastic (GFRP) was investigated using pulse thermography (PT) and lock-in thermography (LIT) techniques. The main objective of this study was to evaluate the detection performance of each technique for LVID in GFRP. Unidirectional and cross-ply GFRPs were prepared with four energy levels using a drop weight impact machine and they were inspected from the impact side, which may be common in actual service conditions. When the impacted side was used for both inspection and thermal loading, results showed that the suggested techniques were able to identify the LVID which is barely visible to the naked eye. However, they also include limitations that depend on the GFRP thickness at the location of the delamination produced by the lowest impact energy of five joule.

알루미늄과 유리섬유 하니컴 구조의 저속 충격 거동 (Low Velocity Impact Behavior of Aluminium and Glass-Fiber Honeycomb Structure)

  • 김진우;원천;이동우;김병선;배성인;송정일
    • Composites Research
    • /
    • 제26권2호
    • /
    • pp.116-122
    • /
    • 2013
  • 본 연구는 동일한 코어재를 가지는 알루미늄과 유리섬유의 하니컴 샌드위치 판넬의 저속 충격시 발생하는 충격 거동 및 압축 실험을 통하여 압축 강도와 압축 계수를 살펴본다. 저속 충격을 받는 하니컴의 충격 거동을 살펴보기 위하여 중량 낙하식 충격 시험을 실시하며, 충격을 가한 후 데이터 분석 및 현미경을 통하여 전형적인 충격파손모드와 손상정도를 비교 평가하였다. 동일한 충격에너지일 때 유리섬유 하니컴 샌드위치 판넬이 알루미늄 하니컴 샌드위치 판넬보다 최대 하중이 높고, 탄성 에너지가 크며, 충격 강도가 높은 것을 확인할 수 있었다.

Response of low-temperature steel beams subjected to single and repeated lateral impacts

  • Truong, Dac Dung;Jung, Hae-Jung;Shin, Hyun Kyoung;Cho, Sang-Rai
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권6호
    • /
    • pp.670-682
    • /
    • 2018
  • This paper presents the experimental and numerical investigation results of the response of low-temperature steel (LT-FH32 grade steel) beams under repeated impacts at room temperature and a single impact at a sub-zero temperature. After conducting tensile tests at room and sub-zero, repeated impact tests were conducted on two clamped single-beam models at room temperature, and single-impact tests of two other clamped single-beam models were conducted at $-50^{\circ}C$. The single and repeated impact tests were conducted by releasing a knife-edge striker using a drop testing machine. The permanent deflection of the model measured after each impact gradually increased with increasing number of impacts. Under the reduced temperature, the permanent deflection of the models slightly decreased. The numerical analyses were also performed to predict the damage response of the tested single-beam models. A comparison of the numerical prediction with those of experiments showed quite reasonable agreement.

충격시 CFRP 복합재 판의 거동과 충격후 압축강도에 관한 실험적 연구 (Experimental Investigation on the Behaviour of CFRP Laminated Composites under Impact and Compression After Impact (CAI))

  • Lee, J.;Kong, C.;Soutis, C.
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 춘계학술발표대회 논문집
    • /
    • pp.129-134
    • /
    • 2003
  • The importance of understanding the response of structural composites to impact and CAI cannot be overstated to develop analytical models for impact damage and CAI strength predictions. This paper presents experimental findings observed from quasi-static lateral load tests, low velocity impact tests, CAI strength and open hole compressive strength tests using 3mm thick composite plates ($[45/-45/0/90]_{3s}$ - IM7/8552). The conclusion is drawn that damage areas for both quasi-static lateral load and impact tests are similar and the curves of several drop weight impacts with varying energy levels (between 5.4 J and 18.7 J) fallow the static curve well. In addition, at a given energy the peak force is in good agreement between the static and impact cases. From the CAI strength and open hole compressive strength tests, it is identified that the failure behaviour of the specimens was very similar to that observed in laminated plates with open holes under compression loading. The residual strengths are in good agreement with the measured open hole compressive strengths, considering the impact damage site as an equivalent hole. The experimental findings suggest that simple analytical models for the prediction of impact damage area and CAI strength can be developed on the basis of the failure mechanism observed from the experimental tests.

  • PDF

면내하중을 받는 복합적층판에 대한 충격하중 및 음향 해석 (Impact Force and Acoustic Analysis on Composite Plates with In-plane Loading)

  • 김성준;황인희;홍창호
    • 한국소음진동공학회논문집
    • /
    • 제22권2호
    • /
    • pp.179-186
    • /
    • 2012
  • The potential hazards resulting from a low-velocity impact(bird-strike, tool drop, runway debris, etc.) on aircraft structures, such as engine nacelle or leading edges has been a long-term concern to the aircraft industry. Certification authorities require that exposed aircraft components must be tested to prove their capability to withstand low-velocity impact without suffering critical damage. In most of the past research studies unloaded specimens have been used for impact tests, however, in reality it is much more likely that a composite structure is exposed to a certain stress state when it is being impacted, which can have a significant effect on the impact performance. And the radiated impact sound induced by impact is analyzed for the damage detection evaluation. In this study, an investigation was undertaken to evaluate the effect in-plane loading on the impact force and sound of composite laminates numerically.

페라이트-펄라이트 조직 아공석강의 상온 및 저온 충격 인성에 미치는 미세조직적 인자의 영향 (Effect of Microstructural Factors on Room- and Low-Temperature Impact Toughness of Hypoeutectoid Steels with Ferrite-Pearlite Structure)

  • 이승용;정상우;황병철
    • 한국재료학회지
    • /
    • 제25권11호
    • /
    • pp.583-589
    • /
    • 2015
  • This paper presents a study on the room- and low-temperature impact toughness of hypoeutectoid steels with ferrite-pearlite structures. Six kinds of hypoeutectoid steel specimens were fabricated by varying the carbon content and austenitizing temperature to investigate the effect of microstructural factors such as pearlite volume fraction, interlamellar spacing, and cementite thickness on the impact toughness. The pearlite volume fraction usually increased with increasing carbon content and austenitizing temperature, while the pearlite interlamellar spacing and cementite thickness mostly decreased with increasing carbon content and austenitizing temperature. The 30C steel with medium pearlite volume fraction and higher manganese content, on the other hand, even though it had a higher volume fraction of pearlite than did the 20C steel, showed a better low-temperature toughness due to its having the lowest ductile-brittle transition temperature. This is because various microstructural factors in addition to the pearlite volume fraction largely affect the ductile-brittle transition temperature and low-temperature toughness of hypoeutectoid steels with ferrite-pearlite structure. In order to improve the room- and low-temperature impact toughness of hypoeutectoid steels with different ferrite-pearlite structures, therefore, more systematic studies are required to understand the effects of various microstructural factors on impact toughness, with a viewpoint of ductile-brittle transition temperature.

요통 유무에 따른 달리기 시 충격과 충격 흡수율 (Impact and Shock Attenuation of the Runners with and without Low Back Pain)

  • Lee, Young-Seong;Ryu, Sihyun;Gil, Ho Jong;Park, Sang-Kyoon
    • 한국운동역학회지
    • /
    • 제31권1호
    • /
    • pp.16-23
    • /
    • 2021
  • Objective: The purpose of the study was to compare the acceleration and shock attenuation (SA) of the runners with/without low back pain (LBG vs. NLBG) while running at 2.5 m/s, 3.0 m/s, 3.5 m/s and 4.0 m/s. Method: 15 adults without low back pain (age: 23.13±3.46 years, body weight: 70.13±8.94 kg, height: 176.79±3.68 cm, NLBG) and 7 adults with low back pain (age: 27.14±5.81 years, body weight: 73.10±10.74 kg, height: 176.41±3.13 cm, LBG) participated in this study. LBG was recruited through the VAS pain rating scale. All participants ran on an instrumented treadmill (Bertec, USA). Results: The LBG shows statistically greater vertical acceleration at the distal tibia during running at 3.5 m/s and 4.0 m/s and greater shock attenuation from the distal tibia to the head during running at 3.5 m/s compared with the NLBG during running (p<.05). As the speed increased, there was a statistically significant increase in vertical/resultant acceleration and shock attenuation for both groups. Conclusion: The findings indicated that the runners with low back pain (LBG) experience greater impact and shock attenuation compared with non-low back pain group (NLBG) during fast running. However, it is still inconclusive whether high impact on the lower extremity during running is the main cause of low back pain in the population. Thus, it is suggested that the study on low back pain should observe the characteristics of impact during running with individuals' low back pain experience and clinical symptoms.

저속충격에 의한 복합재료 적층판의 손상 (Damage of Composite Laminates by Low-Velocity Impact)

  • 남기우;안석환
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.284-288
    • /
    • 2003
  • This study was investigated the nondestructive characteristics of the damage caused by low-velocity impact on symmetric cross-ply laminates. These laminates were $[0^{\circ}/90^{\circ}]{_{16s,}}\;{_{24s,}}\;{_{32s,}}\;{_{48s}}$, that is, the thickness was 2, 3, 4 and 6 mm. The impact machine, model 8250 Dynatup Instron, was used a drop-weight type with gravity. The impact velocities used in experiment were 0.75, 0.90, 1.05, 1.20 and 1.35 m/sec. The load and deformation were increased as impact velocity increase. Even if the load increased with laminates thickness in same impact velocity, the deformation decreased. The extensional velocity was a quick as laminate thickness increase in same impact velocity and as impact velocity increase in same laminate thickness. In ultrasonic scans, damaged area was represented an dimmed zone. This is due to the fact that the wave, after having been partially reflected by the defects, has not enough energy to tough the oposite side or to come back from it. The damaged laminate areas were different according to the laminate thickness and the impact velocity. The extensional velocities became lower in if direction and higher in $0^{\circ}$ direction when the size of the defects increases. But, it was difficult to draw any conclusion for the extensional velocities in $45^{\circ}$ direction.

  • PDF

Low-velocity impact performance of the carbon/epoxy plates exposed to the cyclic temperature

  • Fathollah Taheri-Behrooz;Mahdi Torabi
    • Steel and Composite Structures
    • /
    • 제48권3호
    • /
    • pp.305-320
    • /
    • 2023
  • The mechanical properties of polymeric composites are degraded under elevated temperatures due to the effect of temperature on the mechanical behavior of the resin and resin fiber interfaces. In this study, the effect of temperature on the impact response of the carbon fiber reinforced plastics (CFRP) was investigated at low-velocity impact (LVI) using a drop-weight impact tester machine. All the composite plates were fabricated using a vacuum infusion process with a stacking sequence of [45/0_2/-45/90_2]s, and a thickness of 2.9 mm. A group of the specimens was exposed to an environment with a temperature cycling at the range of -30 ℃ to 65 ℃. In addition, three other groups of the specimens were aged at ambient (28 ℃), -30 ℃, and 65 ℃ for ten days. Then all the conditioned specimens were subjected to LVI at three energy levels of 10, 15, and 20 J. To assess the behavior of the damaged composite plates, the force-time, force-displacement, and energy-time diagrams were analyzed at all temperatures. Finally, radiography, optical microscopy, and scanning electron microscopy (SEM) were used to evaluate the effect of the temperature and damages at various impact levels. Based on the results, different energy levels have a similar effect on the LVI behavior of the samples at various temperatures. Delamination, matrix cracking, and fiber failure were the main damage modes. Compared to the samples tested at room temperature, the reduction of temperature to -30 ℃ enhanced the maximum impact force and flexural stiffness while decreasing the absorbed energy and the failure surface area. The temperature increasing to 65 ℃ increased the maximum impact force and flexural stiffness while decreasing the absorbed energy and the failure surface area. Applying 200 thermal cycles at the range of -30 ℃ to 65 ℃ led to the formation of fine cracks in the matrix while decreasing the absorbed energy. The maximum contact force is recorded under cyclic temperature as 5.95, 6.51 and 7.14 kN, under impact energy of 10, 15 and 20 J, respectively. As well as, the minimum contact force belongs to the room temperature condition and is reported as 3.93, 4.94 and 5.71 kN, under impact energy of 10, 15 and 20 J, respectively.