• Title/Summary/Keyword: Low Frequency Instability

Search Result 133, Processing Time 0.024 seconds

Instability Characteristics of Circular Jets Producing Hole-Tones (Hole-Tone의 발생과 원형제트의 불안정 특성)

  • 임정빈;권영필
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.1005-1011
    • /
    • 1999
  • Generation of hole-tones and the instability of circular impinging jets are investigated based on the frequency characteristics and the radiated sound field. The experiment is carried out with varying hole sizes, jet speeds and impinging distances. It is found that hole-tones occur by both the low-speed laminar jet and the high-speed turbulent jet, but not by the transient jet, while plate-tones without holes are produced only in the high-speed turbulent impinging jet. When the diameter ratio of the hole to the nozzle is nearly one, hole-tones occur most easily. At low speed, it is found that hole-tones are due to the symmetrical unstable jet and the impinging distance decreases with jet speed. And the Strouhal number and the sound pressure level increase with jet speed. At high speed, hole-tones show the same characteristics as plate-tones. It is found that the ratio of the convection speed varies with the Strouhal number and the jet speed.

  • PDF

Reduction of combustion instability using flame holder integrated injector (통합형 연료분사장치를 통한 연소불안정 저감)

  • Hwang, Yong-Seok;Lee, Jong-Guen;Park, Ik-Soo;Choi, Ho-Jin;Jin, Yu-In;Yoon, Hyun-Gull;Lim, Jin-Shik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.432-437
    • /
    • 2010
  • A new device injecting secondary fuel behind flameholder was invented and tested in order to reduce low frequency combustion instability of combustor using V-gutter flameholder. Specially designed combustion device could make large combustion instability up to 180 dB successfully, and newly invented device made a success to reduce 110~120Hz low frequency pressure pulsation up to 84%. It was found that the fuel flow rate of secondary fuel supplying behind flameholder was the only parameter which dominates reduction of instability. It is considered that stabilized flame with sufficient secondary fuel can lead to break the connection between combustion system and acoustic system due to independence of flame from fluctuation of main fuel resulted from synchronization with acoustic wave.

  • PDF

Direct Numerical Simulation of Low Frequency Instability in a Hybrid Rocket with Equivalence Ratio Effects (하이브리드 로켓의 저주파불안정성에 미치는 당량비 영향 직접수치해석)

  • Choi, Hyosang;Lee, Changjin;Kang, Sang Hun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.2
    • /
    • pp.60-67
    • /
    • 2019
  • To understand the low frequency instability(LFI) characteristics in hybrid rockets combustion, effects of equivalence ratio variations on the phase shift between pressure and heat release oscillations were investigated by using the direct numerical simulation. The change in the equivalence ratio of the main chamber was simulated by the temperature and composition variation of the combustion gas introduced into the post-combustion chamber. In the results, additional combustion appeared along with vortex generation at the backward step, and combustion pressure and heat release oscillations were observed as the vortex moved. In addition, the results confirmed that the phase difference between the pressure and heat release oscillation shifts because of the changes in the propagation velocity of pressure wave as the temperature of combustion gas changes.

A Study on Flame Dynamics and Combustion Instability Stabilized with a V-gutter Type Flameholder in a model ramjet combustor (V-gutter 형 보염기를 장착한 모델 램제트 연소기의 화염 특성 및 연소 불안정 연구)

  • Song, Jin-Kwan;Hwang, Jeong-Jae;Song, Jae-Cheon;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.447-448
    • /
    • 2008
  • The goal of this study is to find flame dynamic behavior using a transverse fuel injection in a model combustor, and is to investigate main causes of unstable combustion in a liquid-fueled combustor. For transverse fuel injection into air cross flow, spray result shows similar tendency with Wu et al.[1998] until spray arrives at flame-holder. However, passing through flame-holder, fuel inflow into recirculation region of flameholder is not sufficient so it makes large difference between shear flame and recirculation flame behind flameholder. In combustion tests, the stable flame shows a kind of shear flames and low peaks of dynamic pressure frequencies. On the other hand, unstable flame shows periodic detached flame in recirculation zone and a strong peak of dynamic pressure frequency. The instability frequency is highly affected by influx air velocity, air temperature, equivalence ratio and wake or vortex shedding frequency behind the flameholder.

  • PDF

Frequency Selective Recursive LP of Discrete Harmonic Spectra for Audio Cording

  • Nam, Seung-Hyon
    • The Journal of Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.37-44
    • /
    • 2004
  • n this paper, an efficient LP method for discrete harmonic spectra is proposed and discussed. A new efficient LP method is a combination of recursive and frequency selective LP. While the recursive LP provides better spectral matching in spectral hill, frequency selective LP eliminates numerical instability and improves spectral matching when the harmonics are confined in the low frequency region. The proposed LP method is applied to the HILN coder. Simulation results using a verification model(VM) software for real audio signals show a definite trend of significant improvement.

  • PDF

Active Control of Thermoacoustic Instability in Cylindrical Combustor with Low Speed Flow Field (저속 유동장이 있는 원통형 연소기에서의 열-음향학적 불안정에 대한 능동 제어 연구)

  • 조상연;이용석;이수갑;배충식
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.914-921
    • /
    • 1998
  • Combusion instability due to thermoacoustic feedback in a ducted combustor usually excites severe noise and vibration, which could lead to result in the failure of the system or environmental dispute. In the present study, an active noise control(ANC) method with an adaptive algotithm is hired to suppress instability which has very discrete behavior in the frequency domain. Especially a feedback system is composed to evade hot environment of the combustor, and as a preliminary, the performance and stability of the controller is chekced by simulating the real situation with harmonic waves. Application to the real combustor showed serious reductions in sound pressure level by 20∼30 dB. It was also shown that the selected control system was very stable and effective.

  • PDF

Low Frequency Roll Motion of a Semi-Submersible Moored in Irregular Waves

  • Hong, Yong-Pyo;Choi, Yong-Ho;Lee, Dong-Yeon;Lee, Wang-Keun
    • Journal of Ship and Ocean Technology
    • /
    • v.11 no.3
    • /
    • pp.1-13
    • /
    • 2007
  • A semi-submersible drilling rig is regarded as one of the typical offshore structures operated in the field with moderate environments such as the Gulf of Mexico, Brazil, and West Africa. Its typical roll and pitch natural periods are around 30 seconds, which avoids prevailing regions of the wave energy spectrum, and their responses in waves are quite acceptable for common operation conditions. But large roll and pitch motions can be induced by wave difference frequency energy spectrum if the metacentric heights of a semi-submersible decrease to small values in some loading conditions, and it is because the roll and pitch natural periods increase and approach to the region where the spectral density of the low frequency wave drift moment has significant value. This paper describes the low frequency roll motion of a semi-submersible that are excited by the wave 2nd order difference frequency energy by a series of model experiments. From the model tests with several different initial metacentric heights (GM), it was observed that a semi-submersible can experience large roll motion due to the wave group spectrum.

A Study on Low Frequency Band Selection as a Fatigue Parameter in Surface EMG during Isotonic Exercise of Biceps Brachii Muscle (상완이두근의 등장성 운동시 근피로인자로서 표면근전도의 저주파수대역 선정에 관한 연구)

  • Lee, Sang-Sik;Lee, Ki-Young
    • Journal of Biosystems Engineering
    • /
    • v.36 no.4
    • /
    • pp.285-289
    • /
    • 2011
  • Muscle fatigue is characterized as a progressive increase in discomfort arising from the active muscle at moderate load levels are maintained. The median frequency is the most commonly used as a parameter to describe muscle fatigue. However, the estimate of the median frequency is difficult to indicate muscle fatigue because of its high standard deviation and instability. This paper investigates the power changes of the appropriate low frequency band as a fatigue parameter in EMG during isotonic exercise. To select the appropriate band, linear regression lines are employed to calculate the slopes and the coefficient of determination. Three females and seven males volunteered to participate in surface EMG recordings placed on the biceps brachii and each recording experiment continued until their exhaustion. The results of experiment shows that the power changes of the selected low frequency band (15~45 Hz) have linear slopes and high determinant coefficients. Therefore, this fatiguing parameter using the power changes of the low frequency band is valid to measure the state of muscular fatigue.

Thermoelastic Instability of the Layer Sliding between Two Rigid Non-conducting Half-planes (단단한 비전도 반평판 사이에서 미끄럼 운동하는 평판층의 열탄성 불안정성)

  • 오재응;하태원;조용구;김흥섭;이정윤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.114-121
    • /
    • 2004
  • Frictional heating in brakes causes thermoelastic distortion of the contacting bodies and hence affects the contact pressure distribution. The resulting thermo-mechanical coupling can cause thermoelastic instability (TEI) if the sliding speed is sufficiently high, leading to non-uniform heating called hot spots and low frequency vibration known as hot judder. The vibration of brakes to the known phenomenon of frictionally-excited thermoelastic instability is estimated studying the interface temperature and pressure evolution with time. A simple model has been considered where a layer with half-thickness$\alpha$slides with speed V between two half-planes which are rigid and non-conducting. The advantage of this properlysimple model permits us to deduce analytically the critical conditions for the onset of instability, which is the relation between the critical speed and the growth rate of the interface temperature and pressure. Symmetrical component of pressure and temperature distribution at the layer interfaces can be more unstable than antisymmetrical component. As the thickness $\alpha$ reduces, the system becomes more apt to thermoelastic instability. For perturbations with wave number smaller than the critical$m_{cr}$ the temperature increases with m vice versa for perturbations with wave number larges than $m_{cr}$ , the temperature decreases with m.

Development of a Linear Stability Analysis Model for Vertical Boiling Channels Connecting with Unheated Risers

  • Hwang, Dae-Hyun;Yoo, Yeon-Jong;Zee, Seong-Quun
    • Nuclear Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.572-585
    • /
    • 1999
  • The characteristics of two-phase flow instability in a vertical boiling channel connecting with an unheated riser are investigated through the linear stability analysis model. Various two-phase flow models, including thermal non-equilibrium effects, are taken into account for establishing a physical model in the time domain. A classical approach to the frequency response method is adopted for the stability analysis by employing the D-partition method. The adequacy of the linear model is verified by evaluating experimental data at high quality conditions. It reveals that the flow-pattern-dependent drift velocity model enhances the prediction accuracy while the homogeneous equilibrium model shows the most conservative predictions. The characteristics of density wave oscillations under low-power and low-quality conditions are investigated by devising a simple model which accounts for the gravitational and frictional pressure losses along the channel. The necessary conditions for the occurrences of type-I instability and flow excursion are deduced from the one-dimensional D-partition analysis. The parametric effects of some design variables on low quality oscillations are also investigated.

  • PDF