• Title/Summary/Keyword: Low Frequency Instability

Search Result 134, Processing Time 0.024 seconds

Factor Effects of Low-Frequency Instability of Brake System Using Complex Eigenvalue Analysis (복소 고유치 해석을 통한 브레이크 시스템의 저주파 불안정성 영향인자 분석)

  • Lee, Ik Hwan;Jeong, Wontae;Park, Kyung Hwan;Lee, Jongsoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.683-689
    • /
    • 2014
  • The present study conducted a parameter effect analysis of low-frequency squeal noise using a numerical simulation. The finite element program ABAQUS was used to calculate the dynamic instability based on a complex eigenvalue analysis. A total of five parameters, including the chassis, wear, piston, material property, and contact condition, were selected to identify the factor effects on a low-frequency squeal noise between 2.5 and 3.1 kHz. The present study found the dominant level of each factor through an analysis of the means in the context of the experiment design.

Analysis of the Wounding-Healing Themes in Sandplay Therapy Process for Children with Emotional Instability and Attention Deficit Children (정서불안 아동과 주의력 결핍 아동의 모래놀이치료 과정에서 표현된 상처와 치유 주제에 대한 분석)

  • Kim, Sun Suk;Kim, Ki Hyun
    • Human Ecology Research
    • /
    • v.54 no.6
    • /
    • pp.631-642
    • /
    • 2016
  • This study analyzed of the themes (wounding and healing); concerning the Sandplay therapy process applied to children with emotional instability and attention deficit problems. The subjects of the study were 30 elementary school children who agreed to a personal-interview with the author. They all were families of receiving basic livelihood welfare living in the same county. After the preliminary analysis, the main study data collected from subjects was analyzed by variance (t-test), frequency analysis, and correlation analysis using the standard table modified in accordance with Mitchell's classification system. Particular attention was made in the analyses of the characteristics of the subjects as members of low-income families. As the Sandplay therapy proceeded, it became evident that the wounding area showed a low frequency while the healing area featured a high frequency, and confirmed (as in previous studies) that the Sandplay therapy would be effective for children with emotional instability as well as for those with attention deficit problems. The analysis of difference between the types of children with both problems revealed that Sandplay therapy was more effective for children with emotional instability than for those with attention deficit problems. The analysis also revealed that Sandplay therapy was more effective for girls than for boys.

AN ANALYTICAL STUDY ON THE DYNAMIC CHARACTERISTICS OF A LIQUID PROPULSION SYSTEM

  • Lee Han Ju;Lim Seok Hee;Jung Dong Ho;Kim Yong Wook;Oh Seung Hyub
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.325-327
    • /
    • 2004
  • The longitudinal instability (POGO) of the rocket should not be occurred during the whole flight time for the large class liquid propulsion system to complete a mission successfully. The longitudinal instability is caused by the resonance between the propulsion system and rocket structure in the low frequency range below 50Hz, ordinarily. Analysis on the low frequency dynamic characteristics on the liquid propulsion system with staged combustion cycle engine system was performed as a preliminary study on the longitudinal instability analysis.

  • PDF

Low frequency Instability in Hybrid Rocket Post-chamber Configuration (연소실 형상 변화에 의한 하이브리드 로켓의 저주파수 연소불안정)

  • Park, Kyungsu;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.1
    • /
    • pp.29-36
    • /
    • 2014
  • Hybrid rocket displays many different low frequency pressure oscillations during combustion. Thermal lag between solid and gas phase is the primary mechanism to trigger low frequency pressure oscillations of around 10Hz, and Helmholtz or $L^*$ mode also produces other types of low frequency oscillations above 10 Hz which is associated with the change in combustion volume. Since the flow characteristics in hybrid rocket is very similar to those in solid rocket combustion, it is not surprising to observe similar pressure oscillation behaviors. Experimental test shows that combustion pressure suddenly turns into to a big amplitude oscillation around 10Hz then followed by returning to an original pressure level after a short period combustion. Further investigations show that this instability is independent of the change in O/F ratio at all. One of the possible candidates is the vortex shedding dynamics over the backward step in the post combustion chamber. It is required to investigate the low frequency oscillation mechanism in the future study.

Occurance and Analysis of Combustion Instability in Supersonic Airbreathing Engine (초음속 공기흡입식 엔진 연소기의 연소불안정 발생 및 분석)

  • Hwang, Yong-Seok;Lee, Jong-Guen;Choi, Ho-Jin;Gil, Hyun-Yong;Byun, Jong-Ryul;Yoon, Hyun-Gull;Lim, Jin-Shik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.83-87
    • /
    • 2009
  • Ramjet engine is weak for low frequency combustion instability because of their long air flow passage. A model combustor which has fuel injector and V-gutter shaped flame holder was designed and fabricated in order to simulate a combustion mechanism of ramjet engine, and it could demonstrate combustion instability which might occur in ramjet combustor. The frequency of the instability was very similar to that of acoustic resonance frequency of combustor, and it proved that a typical combustion instability by thermo-acoustic coupling occurred.

  • PDF

The change of spray characteristics on hydraulic acoustic wave influence and prediction of low combustion instability (수력파동에 의한 분무변화 및 저주파 연소불안정에의 영향 예측)

  • Kim, Tae-Kyun;Lee, Sang-Seung;Yoon, Woong-Sup
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.152-160
    • /
    • 2004
  • Studies to investigate the influence on hydraulic acoustic wave were conducted using pressure swirl atomizer under making frequency range from 0 to 60Hz using water as a propellant. Pressure oscillation from hydraulic sources gives a strong influences on atomization and mixing processes. The ability to drive these low frequency pressure oscillations makes spray characteristics changeable. The effect of pressure perturbation and its spray characteristics showed that low injector pressure with pressure pulsation gives more significantly than high injector pressure with pressure perturbation in SMD, spray cone angle, breakup length. Moreover, this data could be used for prediction of low combustion instability getting G factor.

  • PDF

Combustion Instability Mechanism of a Lean Premixed Gas Turbine Combustor

  • Seo, Seonghyeon
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.906-913
    • /
    • 2003
  • Lean premixed combustion has been considered as one of the promising solutions for the reduction of NOx emissions from gas turbines. However, unstable combustion of lean premixed flow becomes a real challenge on the way to design a reliable, highly efficient dry low NOx gas turbine combustor. Contrary to a conventional diffusion type combustion system, characteristics of premixed combustion significantly depend on a premixing degree of combusting flow. Combustion behavior in terms of stability has been studied in a model gas turbine combustor burning natural gas and air. Incompleteness of premixing is identified as significant perturbation source for inducing unstable combustion. Application of a simple convection time lag theory can only predict instability modes but cannot determine whether instability occurs or not. Low frequency perturbations are observed at the onset of instability and believed to initiate the coupling between heat release rate and pressure fluctuations.

Effect of Nozzle Configuration and Impinging Surface on the Impinging Tone Generation by Circular Jets (충돌면과 노즐의 형상이 원형충돌제트에 의한 충돌순음 발생에 미치는 영향)

  • Im, Jung-Bin;Kwon, Young-Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.6
    • /
    • pp.693-700
    • /
    • 2003
  • The effect of the configuration of the nozzle and the impinging surface on the characteristics of the hole-tones has been experimentally investigated. It is found that the plate-tone is a special case of hole-tones, where the hole diameter is zero. The jet velocity range for hole-tones is divided into the low velocity region associated with laminar jet and the high velocity region with turbulent jet. The frequency of the tone is that for the shear layer instability at the nozzle exit or that attainable by a cascade of vortex pairing process with increase of the impinging distance. When the distance is longer than one diameter the frequency decreases to the terminal value near the preferred frequency of the column mode instability, in the range 0.23< $St_d$<0.53, where $St_d$ is the Strouhal number defined by $fd/U_J$, f the frequency, d the nozzle diameter, and $U_J$ the exit velocity. While the convection speed of the downstream vortex, in the present study, is almost constant at low-speed laminar jet, it increases with distance at high-speed turbulent jet. As the frequency increases, the convection speed decreases in the low frequency range corresponding to the preferred mode, in agreement with the existing experimental data for a free jet.

Oscillating Boundary Layer Flow and Low Frequency Instability in Hybrid Rocket Combustion (하이브리드 로켓 연소에서의 경계층 진동 변화와 저주파수 연소불안정)

  • Kim, Jina;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.720-727
    • /
    • 2019
  • Resonating thermal lags of solid fuel with heat transfer oscillations generated by boundary layer oscillation is the primary mechanism of the occurrence of the LFI (Low Frequency Combustion Instability) in hybrid rocket combustion. This study was experimentally attempted to confirm that how the boundary layer was perturbed and led to the LFI. Special attention was also made on oxidizer swirl injection to investigate the contribution to combustion stabilization. Also the overall behavior of fluctuating boundary layer flow and the occurrence of the LFI was monitored as swirl intensity increased. Fluctuating boundary layer was successfully monitored by the captured image and POD (Proper Orthogonal Decomposition) analysis. In the results, oscillating boundary layer became stabilized as the swirl intensity increases. And the coupling strength between high frequency p', q' diminished and periodical amplification of RI (Rayleigh Index) with similar frequency band of thermal lag was also decreased. Thus, results confirmed that oscillating axial boundary layer triggered by periodic coupling of high frequency p', q' is the primary mechanism to excite thermal resonance with thermal lag characteristics of solid fuel.

High Frequency Oscillations and Low Frequency Instability in Hybrid Rocket Combustion (하이브리드 로켓 연소실험에서의 고주파수 진동과 저주파수 연소불안정)

  • Chae, Heesang;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.12
    • /
    • pp.1021-1027
    • /
    • 2018
  • Experimental studies have been conducted to verify that the positive coupling between pressure oscillation (p') and combustion oscillation (q') of high frequency range is a prerequisite for the initiation of low frequency instability in hybrid rocket combustion. The post-chamber length and combustion equivalence ratio were selected as critical parameters to control the phase difference between p' and q', and p' amplitude in relation to the suppression of LFI. In the results, even if the post-chamber length increases, the phase difference between p' and q' maintains below pi/2, which is a necessary condition for the LFI development, but the amplification of RI (Rayleigh index) was substantially decreased leading to a stable combustion. In addition, results confirmed that combustion stability is achieved by changing the momentary equivalence ratio and/or by suppressing the positive coupling status of p' and q'. Thus, the periodic amplification of RI was identified as the middle path of the mechanism of occurrence of LFI.