• Title/Summary/Keyword: Low Flow Rate

Search Result 1,935, Processing Time 0.028 seconds

Design and Economic Analysis of Low Pressure Liquid Air Production Process using LNG cold energy (LNG 냉열을 활용한 저압 액화 공기 생산 공정 설계 및 경제성 평가)

  • Mun, Haneul;Jung, Geonho;Lee, Inkyu
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.345-358
    • /
    • 2021
  • This study focuses on the development of the liquid air production process that uses LNG (liquefied natural gas) cold energy which usually wasted during the regasification stage. The liquid air can be transported to the LNG exporter, and it can be utilized as the cold source to replace certain amount of refrigerant for the natural gas liquefaction. Therefore, the condition of the liquid air has to satisfy the available pressure of LNG storage tank. To satisfy pressure constraint of the membrane type LNG tank, proposed process is designed to produce liquid air at 1.3bar. In proposed process, the air is precooled by heat exchange with LNG and subcooled by nitrogen refrigeration cycle. When the amount of transported liquid air is as large as the capacity of the LNG carrier, it could be economical in terms of the transportation cost. In addition, larger liquid air can give more cold energy that can be used in natural gas liquefaction plant. To analyze the effect of the liquid air production amount, under the same LNG supply condition, the proposed process is simulated under 3 different air flow rate: 0.50 kg/s, 0.75 kg/s, 1.00 kg/s, correspond to Case1, Case2, and Case3, respectively. Each case was analyzed thermodynamically and economically. It shows a tendency that the more liquid air production, the more energy demanded per same mass of product as Case3 is 0.18kWh higher than Base case. In consequence the production cost per 1 kg liquid air in Case3 was $0.0172 higher. However, as liquid air production increases, the transportation cost per 1 kg liquid air has reduced by $0.0395. In terms of overall cost, Case 3 confirmed that liquid air can be produced and transported with $0.0223 less per kilogram than Base case.

Dosimetry of the Low Fluence Fast Neutron Beams for Boron Neutron Capture Therapy (붕소-중성자 포획치료를 위한 미세 속중성자 선량 특성 연구)

  • Lee, Dong-Han;Ji, Young-Hoon;Lee, Dong-Hoon;Park, Hyun-Joo;Lee, Suk;Lee, Kyung-Hoo;Suh, So-Heigh;Kim, Mi-Sook;Cho, Chul-Koo;Yoo, Seong-Yul;Yu, Hyung-Jun;Gwak, Ho-Shin;Rhee, Chang-Hun
    • Radiation Oncology Journal
    • /
    • v.19 no.1
    • /
    • pp.66-73
    • /
    • 2001
  • Purpose : For the research of Boron Neutron Capture Therapy (BNCT), fast neutrons generated from the MC-50 cyclotron with maximum energy of 34.4 MeV in Korea Cancer Center Hospital were moderated by 70 cm paraffin and then the dose characteristics were investigated. Using these results, we hope to establish the protocol about dose measurement of epi-thermal neutron, to make a basis of dose characteristic of epi-thermal neutron emitted from nuclear reactor, and to find feasibility about accelerator-based BNCT. Method and Materials : For measuring the absorbed dose and dose distribution of fast neutron beams, we used Unidos 10005 (PTW, Germany) electrometer and IC-17 (Far West, USA), IC-18, ElC-1 ion chambers manufactured by A-150 plastic and used IC-l7M ion chamber manufactured by magnesium for gamma dose. There chambers were flushed with tissue equivalent gas and argon gas and then the flow rate was S co per minute. Using Monte Carlo N-Particle (MCNP) code, transport program in mixed field with neutron, photon, electron, two dimensional dose and energy fluence distribution was calculated and there results were compared with measured results. Results : The absorbed dose of fast neutron beams was $6.47\times10^{-3}$ cGy per 1 MU at the 4 cm depth of the water phantom, which is assumed to be effective depth for BNCT. The magnitude of gamma contamination intermingled with fast neutron beams was $65.2{\pm}0.9\%$ at the same depth. In the dose distribution according to the depth of water, the neutron dose decreased linearly and the gamma dose decreased exponentially as the depth was deepened. The factor expressed energy level, $D_{20}/D_{10}$, of the total dose was 0.718. Conclusion : Through the direct measurement using the two ion chambers, which is made different wall materials, and computer calculation of isodose distribution using MCNP simulation method, we have found the dose characteristics of low fluence fast neutron beams. If the power supply and the target material, which generate high voltage and current, will be developed and gamma contamination was reduced by lead or bismuth, we think, it may be possible to accelerator-based BNCT.

  • PDF

Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving (자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가)

  • Cho, Moon Ki;Bae, Kyoung Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.191-207
    • /
    • 2021
  • Up to this day, mobile communications have evolved rapidly over the decades, mainly focusing on speed-up to meet the growing data demands of 2G to 5G. And with the start of the 5G era, efforts are being made to provide such various services to customers, as IoT, V2X, robots, artificial intelligence, augmented virtual reality, and smart cities, which are expected to change the environment of our lives and industries as a whole. In a bid to provide those services, on top of high speed data, reduced latency and reliability are critical for real-time services. Thus, 5G has paved the way for service delivery through maximum speed of 20Gbps, a delay of 1ms, and a connecting device of 106/㎢ In particular, in intelligent traffic control systems and services using various vehicle-based Vehicle to X (V2X), such as traffic control, in addition to high-speed data speed, reduction of delay and reliability for real-time services are very important. 5G communication uses high frequencies of 3.5Ghz and 28Ghz. These high-frequency waves can go with high-speed thanks to their straightness while their short wavelength and small diffraction angle limit their reach to distance and prevent them from penetrating walls, causing restrictions on their use indoors. Therefore, under existing networks it's difficult to overcome these constraints. The underlying centralized SDN also has a limited capability in offering delay-sensitive services because communication with many nodes creates overload in its processing. Basically, SDN, which means a structure that separates signals from the control plane from packets in the data plane, requires control of the delay-related tree structure available in the event of an emergency during autonomous driving. In these scenarios, the network architecture that handles in-vehicle information is a major variable of delay. Since SDNs in general centralized structures are difficult to meet the desired delay level, studies on the optimal size of SDNs for information processing should be conducted. Thus, SDNs need to be separated on a certain scale and construct a new type of network, which can efficiently respond to dynamically changing traffic and provide high-quality, flexible services. Moreover, the structure of these networks is closely related to ultra-low latency, high confidence, and hyper-connectivity and should be based on a new form of split SDN rather than an existing centralized SDN structure, even in the case of the worst condition. And in these SDN structural networks, where automobiles pass through small 5G cells very quickly, the information change cycle, round trip delay (RTD), and the data processing time of SDN are highly correlated with the delay. Of these, RDT is not a significant factor because it has sufficient speed and less than 1 ms of delay, but the information change cycle and data processing time of SDN are factors that greatly affect the delay. Especially, in an emergency of self-driving environment linked to an ITS(Intelligent Traffic System) that requires low latency and high reliability, information should be transmitted and processed very quickly. That is a case in point where delay plays a very sensitive role. In this paper, we study the SDN architecture in emergencies during autonomous driving and conduct analysis through simulation of the correlation with the cell layer in which the vehicle should request relevant information according to the information flow. For simulation: As the Data Rate of 5G is high enough, we can assume the information for neighbor vehicle support to the car without errors. Furthermore, we assumed 5G small cells within 50 ~ 250 m in cell radius, and the maximum speed of the vehicle was considered as a 30km ~ 200 km/hour in order to examine the network architecture to minimize the delay.

Comparison of Single-Breath and Intra-Breath Method in Measuring Diffusing Capacity for Carbon Monoxide of the Lung (일산화탄소 폐확산능검사에서 단회호흡법과 호흡내검사법의 비교)

  • Lee, Jae-Ho;Chung, Hee-Soon;Shim, Young-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.4
    • /
    • pp.555-568
    • /
    • 1995
  • Background: It is most physiologic to measure the diffusing capacity of the lung by using oxygen, but it is so difficult to measure partial pressure of oxygen in the capillary blood of the lung that in clinical practice it is measured by using carbon monoxide, and single-breath diffusing capacity method is used most widely. However, since the process of withholding the breath for 10 seconds after inspiration to the total lung capacity is very hard to practice for patients who suffer from cough, dyspnea, etc, the intra-breath lung diffusing capacity method which requires a single exhalation of low-flow rate without such process was devised. In this study, we want to know whether or not there is any significant difference in the diffusing capacity of the lung measured by the single-breath and intra-breath methods, and if any, which factors have any influence. Methods: We chose randomly 73 persons without regarding specific disease, and after conducting 3 times the flow-volume curve test, we selected forced vital capacity(FVC), percent of predicted forced vital capacity, forced expiratory volume within 1 second($FEV_1$), percent of forced expiratory volume within 1 second, the ratio of forced expiratory volume within 1 second against forced vital capacity($FEV_1$/FVC) in test which the sum of FVC and $FEV_1$ is biggest. We measured the diffusing capacity of the lung 3 times in each of the single-breath and intra-breath methods at intervals of 5 minutes, and we evaluated which factors have any influence on the difference of the diffusing capacity of the lung between two methods[the mean values(ml/min/mmHg) of difference between two diffusing capacity measured by two methods] by means of the linear regression method, and obtained the following results: Results: 1) Intra-test reproducibility in the single-breath and intra-breath methods was excellent. 2) There was in general a good correlation between the diffusing capacity of the lung measured by a single-breath method and that measured by the intra-breath method, but there was a significant difference between values measured by both methods($1.01{\pm}0.35ml/min/mmHg$, p<0.01) 3) The difference between the diffusing capacity of the lung measured by both methods was not correlated to FVC, but was correlated to $FEV_1$, percent of $FEV_1$, $FEV_1$/FVC and the gradient of methane concentration which is an indicator of distribution of ventilation, and it was found as a result of the multiple regression test, that the effect of $FEV_1$/FVC was most strong(r=-0.4725, p<0.01) 4) In a graphic view of the difference of diffusing capacity measured by single-breath and intra-breath method and $FEV_1$/FVC, it was found that the former was divided into two groups in section where $FEV_1$/FVC is 50~60%, and that there was no significant difference between two methods in the section where $FEV_1$/FVC is equal or more than 60% ($0.05{\pm}0.24ml/min/mmHg$, p>0.1), but there was significant difference in the section, less than 60%($-4.5{\pm}0.34ml/min/mmHg$, p<0.01). 5. The diffusing capacity of the lung measured by the single-breath and intra-breath method was the same in value($24.3{\pm}0.68ml/min/mmHg$) within the normal range(2%/L) of the methane gas gradient, and there was no difference depending on the measuring method, but if the methane concentration gradients exceed 2%/L, the diffusing capacity of the lung measured by single-breath method became $15.0{\pm}0.44ml/min/mmHg$, and that measured by intra-breath method, $11.9{\pm}0.51ml/min/mmHg$, and there was a significant difference between them(p<0.01). Conclusion: Therefore, in case where $FEV_1$/FVC was less than 60%, the diffusing capacity of the lung measured by intra-breath method represented significantly lower value than that by single-breath method, and it was presumed to be caused largely by a defect of ventilation-distribution, but the possibility could not be excluded that the diffusing capacity of the lung might be overestimated in the single-breath method, or the actual reduction of the diffusing capacity of the lung appeared more sensitively in the intra-breath method.

  • PDF

The lesson From Korean War (한국전쟁의 교훈과 대비 -병력수(兵力數) 및 부대수(部隊數)를 중심으로-)

  • Yoon, Il-Young
    • Journal of National Security and Military Science
    • /
    • s.8
    • /
    • pp.49-168
    • /
    • 2010
  • Just before the Korean War, the total number of the North Korean troops was 198,380, while that of the ROK(Republic of Korea) army troops 105,752. That is, the total number of the ROK army troops at that time was 53.3% of the total number of the North Korean army. As of December 2008, the total number of the North Korean troops is estimated to be 1,190,000, while that of the ROK troops is 655,000, so the ROK army maintains 55.04% of the total number of the North Korean troops. If the ROK army continues to reduce its troops according to [Military Reform Plan 2020], the total number of its troops will be 517,000 m 2020. If North Korea maintains the current status(l,190,000 troops), the number of the ROK troops will be 43.4% of the North Korean army. In terms of units, just before the Korean War, the number of the ROK army divisions and regiments was 80% and 44.8% of North Korean army. As of December 2008, North Korea maintains 86 divisions and 69 regiments. Compared to the North Korean army, the ROK army maintains 46 Divisions (53.4% of North Korean army) and 15 regiments (21.3% of North Korean army). If the ROK army continue to reduce the military units according to [Military Reform Plan 2020], the number of ROK army divisions will be 28(13 Active Division, 4 Mobilization Divisions and 11 Local Reserve Divisions), while that of the North Korean army will be 86 in 2020. In that case, the number of divisions of the ROK army will be 32.5% of North Korean army. During the Korean war, North Korea suddenly invaded the Republic of Korea and occupied its capital 3 days after the war began. At that time, the ROK army maintained 80% of army divisions, compared to the North Korean army. The lesson to be learned from this is that, if the ROK army is forced to disperse its divisions because of the simultaneous invasion of North Korea and attack of guerrillas in home front areas, the Republic of Korea can be in a serious military danger, even though it maintains 80% of military divisions of North Korea. If the ROK army promotes the plans in [Military Reform Plan 2020], the number of military units of the ROK army will be 32.5% of that of the North Korean army. This ratio is 2.4 times lower than that of the time when the Korean war began, and in this case, 90% of total military power should be placed in the DMZ area. If 90% of military power is placed in the DMZ area, few troops will be left for the defense of home front. In addition, if the ROK army continues to reduce the troops, it can allow North Korea to have asymmetrical superiority in military force and it will eventually exert negative influence on the stability and peace of the Korean peninsular. On the other hand, it should be reminded that, during the Korean War, the Republic of Korea was attacked by North Korea, though it kept 53.3% of troops, compared to North Korea. It should also be reminded that, as of 2008, the ROK army is defending its territory with the troops 55.04% of North Korea. Moreover, the national defense is assisted by 25,120 troops of the US Forces in Korea. In case the total number of the ROK troops falls below 43.4% of the North Korean army, it may cause social unrest about the national security and may lead North Korea's misjudgement. Besides, according to Lanchester strategy, the party with weaker military power (60% compared to the party with stronger military power) has the 4.1% of winning possibility. Therefore, if we consider the fact that the total number of the ROK army troops is 55.04% of that of the North Korean army, the winning possibility of the ROK army is not higher than 4.1%. If the total number of ROK troops is reduced to 43.4% of that of North Korea, the winning possibility will be lower and the military operations will be in critically difficult situation. [Military Reform Plan 2020] rums at the reduction of troops and units of the ground forces under the policy of 'select few'. However, the problem is that the financial support to achieve this goal is not secured. Therefore, the promotion of [Military Reform Plan 2020] may cause the weakening of military defence power in 2020. Some advanced countries such as Japan, UK, Germany, and France have promoted the policy of 'select few'. However, what is to be noted is that the national security situation of those countries is much different from that of Korea. With the collapse of the Soviet Unions and European communist countries, the military threat of those European advanced countries has almost disappeared. In addition, the threats those advanced countries are facing are not wars in national level, but terrorism in international level. To cope with the threats like terrorism, large scaled army trops would not be necessary. So those advanced European countries can promote the policy of 'select few'. In line with this, those European countries put their focuses on the development of military sections that deal with non-military operations and protection from unspecified enemies. That is, those countries are promoting the policy of 'select few', because they found that the policy is suitable for their national security environment. Moreover, since they are pursuing common interest under the European Union(EU) and they can form an allied force under NATO, it is natural that they are pursing the 'select few' policy. At present, NATO maintains the larger number of troops(2,446,000) than Russia(l,027,000) to prepare for the potential threat of Russia. The situation of japan is also much different from that of Korea. As a country composed of islands, its prime military focus is put on the maritime defense. Accordingly, the development of ground force is given secondary focus. The japanese government promotes the policy to develop technology-concentrated small size navy and air-forces, instead of maintaining large-scaled ground force. In addition, because of the 'Peace Constitution' that was enacted just after the end of World War II, japan cannot maintain troops more than 240,000. With the limited number of troops (240,000), japan has no choice but to promote the policy of 'select few'. However, the situation of Korea is much different from the situations of those countries. The Republic of Korea is facing the threat of the North Korean Army that aims at keeping a large-scale military force. In addition, the countries surrounding Korea are also super powers containing strong military forces. Therefore, to cope with the actual threat of present and unspecified threat of future, the importance of maintaining a carefully calculated large-scale military force cannot be denied. Furthermore, when considering the fact that Korea is in a peninsular, the Republic of Korea must take it into consideration the tradition of continental countries' to maintain large-scale military powers. Since the Korean War, the ROK army has developed the technology-force combined military system, maintaining proper number of troops and units and pursuing 'select few' policy at the same time. This has been promoted with the consideration of military situation in the Koran peninsular and the cooperation of ROK-US combined forces. This kind of unique military system that cannot be found in other countries can be said to be an insightful one for the preparation for the actual threat of North Korea and the conflicts between continental countries and maritime countries. In addition, this kind of technology-force combined military system has enabled us to keep peace in Korea. Therefore, it would be desirable to maintain this technology-force combined military system until the reunification of the Korean peninsular. Furthermore, it is to be pointed out that blindly following the 'select few' policy of advanced countries is not a good option, because it is ignoring the military strategic situation of the Korean peninsular. If the Republic of Korea pursues the reduction of troops and units radically without consideration of the threat of North Korea and surrounding countries, it could be a significant strategic mistake. In addition, the ROK army should keep an eye on the fact the European advanced countries and Japan that are not facing direct military threats are spending more defense expenditures than Korea. If the ROK army reduces military power without proper alternatives, it would exert a negative effect on the stable economic development of Korea and peaceful reunification of the Korean peninsular. Therefore, the desirable option would be to focus on the development of quality of forces, maintaining proper size and number of troops and units under the technology-force combined military system. The tableau above shows that the advanced countries like the UK, Germany, Italy, and Austria spend more defense expenditure per person than the Republic of Korea, although they do not face actual military threats, and that they keep achieving better economic progress than the countries that spend less defense expenditure. Therefore, it would be necessary to adopt the merits of the defense systems of those advanced countries. As we have examined, it would be desirable to maintain the current size and number of troops and units, to promote 'select few' policy with increased defense expenditure, and to strengthen the technology-force combined military system. On the basis of firm national security, the Republic of Korea can develop efficient policies for reunification and prosperity, and jump into the status of advanced countries. Therefore, the plans to reduce troops and units in [Military Reform Plan 2020] should be reexamined. If it is difficult for the ROK army to maintain its size of 655,000 troops because of low birth rate, the plans to establish the prompt mobilization force or to adopt drafting system should be considered for the maintenance of proper number of troops and units. From now on, the Republic of Korean government should develop plans to keep peace as well as to prepare unexpected changes in the Korean peninsular. For the achievement of these missions, some options can be considered. The first one is to maintain the same size of military troops and units as North Korea. The second one is to maintain the same level of military power as North Korea in terms of military force index. The third one is to maintain the same level of military power as North Korea, with the combination of the prompt mobilization force and the troops in active service under the system of technology-force combined military system. At present, it would be not possible for the ROK army to maintain such a large-size military force as North Korea (1,190,000 troops and 86 units). So it would be rational to maintain almost the same level of military force as North Korea with the combination of the troops on the active list and the prompt mobilization forces. In other words, with the combination of the troops in active service (60%) and the prompt mobilization force (40%), the ROK army should develop the strategies to harmonize technology and forces. The Korean government should also be prepared for the strategic flexibility of USFK, the possibility of American policy change about the location of foreign army, radical unexpected changes in North Korea, the emergence of potential threat, surrounding countries' demand for Korean force for the maintenance of regional stability, and demand for international cooperation against terrorism. For this, it is necessary to develop new approaches toward the proper number and size of troops and units. For instance, to prepare for radical unexpected political or military changes in North Korea, the Republic of Korea should have plans to protect a large number of refugees, to control arms and people, to maintain social security, and to keep orders in North Korea. From the experiences of other countries, it is estimated that 115,000 to 230,000 troops, plus ten thousands of police are required to stabilize the North Korean society, in the case radical unexpected military or political change happens in North Korea. In addition, if the Republic of Korea should perform the release of hostages, control of mass destruction weapons, and suppress the internal wars in North Korea, it should send 460,000 troops to North Korea. Moreover, if the Republic of Korea wants to stop the attack of North Korea and flow of refugees in DMZ area, at least 600,000 troops would be required. In sum, even if the ROK army maintains 600,000 troops, it may need additional 460,000 troops to prepare for unexpected radical changes in North Korea. For this, it is necessary to establish the prompt mobilization force whose size and number are almost the same as the troops in active service. In case the ROK army keeps 650,000 troops, the proper number of the prompt mobilization force would be 460,000 to 500,000.

  • PDF