• Title/Summary/Keyword: Low Dose Radiation

Search Result 944, Processing Time 0.032 seconds

Comparison of Linear Accelerator and Helical Tomotherapy Plans for Glioblastoma Multiforme Patients

  • Koca, Timur;Basaran, Hamit;Sezen, Duygu;Karaca, Sibel;Ors, Yasemin;Arslan, Deniz;Aydin, Aysen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7811-7816
    • /
    • 2014
  • Background: Despite advances in radiotherapy, overall survival of glioblastoma multiforme (GBM) patients is still poor. Moreover dosimetrical analyses with these newer treatment methods are insufficient. The current study is aimed to compare intensity modulated radiation therapy (IMRT) linear accelerator (linac) and helical tomotherapy (HT) treatment plans for patients with prognostic aggressive brain tumors. Material and Methods: A total of 20 GBM patient plans were prospectively evaluated in both linac and HT planning systems. Plans are compared with respect to homogenity index, conformity index and organs at risk (OAR) sparing effects of the treatments. Results: Both treatment plans provided good results that can be applied to GBM patients but it was concluded that if the critical organs with relatively lower dose constraints are closer to the target region, HT for radiotherapeutical application could be preferred. Conclusion: Tomotherapy plans were superior to linear accelerator plans from the aspect of OAR sparing with slightly broader low dose ranges over the healthy tissues. In case a clinic has both of these IMRT systems, employment of HT is recommended based on the observed results and future re-irradiation strategies must be considered.

Study of radiation exposure on human body using of Computed Tomography (전산화단층촬영 검사 시 인체에 미치는 방사선피폭선량 분석연구)

  • Seon, Jong-Ryoul;Yoo, Se-Jong
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.4
    • /
    • pp.193-198
    • /
    • 2015
  • This study analyzed the total number of 19,636 patients and radiation technologists, 11,433 of male and 8,203 of female by examined body parts, age, types of detectors, the using contrast enhancement and working condition of the technologists, regular staffs or rotation-duty staffs, based on the K-DOS program distributed by FDA with the DLP value of diagnostic evaluation. The result shows that the effective radiation dose was 0.7mSv~41.7mSv for each region and male patients had more radiation exposure than females. And the amount of exposure was also affected by the types and the method of detectors. Furthermore, the regular staffs took the role of helping the patient to get reduced amount of radiation exposure than rotation duty-staffs. Computed tomography (CT) use has increased dramatically over the past several decades. In this reason, to support the patients and the workers' health in the field, the hospitals should apply specialized regular working radiation technologist system and manufacturing companies of those CTs should develop low medical radiation exposure devices.

The Optimization Experience of Occupational Exposure during Unclear Power Plant Outage (원자력발전소 계획예방정비 기간중 피폭최적화 경험)

  • Song, Young-Il;Kim, Hyung-Jin;Park, Hun-Kook;Kim, Hee-Geun
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.2
    • /
    • pp.145-154
    • /
    • 2003
  • By optimizing the radiation protection the collective dose and individual dose could be reduced during YGN #4 $5^{th}$ outage in 2001. The collective doses for the two high radiation jobs decreased to 85% and 65% of expected doses. The proportion of workers with low dose (below 1mSv) exposure increased 4% while the proportion of workers with over 3mSv and 5mSv exposure are decreased to 2%, 1% respectively. But none is exposed over 8mSv for the annual dose. To aid decision of utilizing the robot, cost- benefit analysis was performed and reasonable point was proposed to use the robot. For the first time job, repeated ALARA meeting and mock up training were implemented to set up working procedure by identifying the trouble. To easily set up standard procedure, mockup process was videotaped and reviewed during ALARA meeting. Monitoring is a good approach to chase radiological working condition such as working time, dose rate. behavior of workers, especially for high radiation work. Those data were estimated and adjusted from the stage of work planning to mock up. At the stage of actual work the monitoring data were compared to the estimation and recorded to database. This database will not only be used as a powerful tool for dose optimization at the following outage but also as a guideline to dose constraint set up for optimization for each specific situation.

The Effects of MDCK Cell on Low Dose Irradiation (저선량 방사선 조사가 배양 세포에 미치는 효과)

  • Lee, Song-Jae;Chang, Jae-Chul
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.9 no.1
    • /
    • pp.106-112
    • /
    • 1997
  • The present study was undertaken to investigate the effects of cultured MDCK cell line on the cell viability and the activities of superoxide dismutase(SOD). catalase, change of FOX 1 with low dose radiation. When MDCK cells were irradiated low dose (less than 50 cGy), the cell viability remains high after 2 hrs, but few changes after 24 hrs. In the low dose irradiated MDCK cells, the activities of SOD and catalase were increased with compared to control group and high dose. But the content of $H_2O_2$(FOX 1) was decreased. These results suggest that the cultured MDCK cells probably were induced expression of defense mechanism.

  • PDF

PREVENTION OF CIGARETTE SMOKE INDUCED LUNG CANCER BY LOW LET IONIZING RADIATION

  • Sanders, Charles L.
    • Nuclear Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.539-550
    • /
    • 2008
  • Lung cancer is the most prevalent global cancer, ${\sim}90%$ of which is caused by cigarette smoking. The LNT hypothesis has been inappropriately applied to estimate lung cancer risk due to ionizing radiation. A threshold of ${\sim}1\;Gy$ for lung cancer has been observed in never smokers. Lung cancer risk among nuclear workers, radiologists and diagnostically exposed patients was typically reduced by ${\sim}40%$ following exposure to <100 mSv low LET radiation. The consistency and magnitude of reduced lung cancer in nuclear workers and occurrence of reduced lung cancer in exposed non-worker populations could not be explained by the HWE. Ecologic studies of indoor radon showed highly significant reductions in lung cancer risk. A similar reduction in lung cancer was seen in a recent well designed case-control study of indoor radon, indicating that exposure to radon at the EPA action level is associated with a decrease of ${\sim}60%$ in lung cancer. A cumulative whole-body dose of ${\sim}1\;Gy$ gamma rays is associated with a marked decrease in smoking-induced lung cancer in plutonium workers. Low dose, low LET radiation appears to increase apoptosis mediated removal of $\alpha$-particle and cigarette smoke transformed pulmonary cells before they can develop into lung cancer.

Noise reduction in low-dose positron emission tomography with adaptive parameter estimation in sinogram domain

  • Kyu Bom Kim;Yeonkyeong Kim;Kyuseok Kim;Su Hwan Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4127-4133
    • /
    • 2024
  • Noise reduction in low-dose positron emission tomography (PET) is a well-researched topic aimed at reducing patient radiation doses and improving diagnosis. Software-based noise reduction mainly improves the contrast between regions by reducing the variation of the acquired image. However, it should be performed under appropriate parameters to reduce discrimination. We propose a method that derives optimal noise-reduction parameters using the multi-scale structural similarity index measure and visual information fidelity, which are metrics for image quality assessment. Simulation and experimental studies demonstrated the viability of the proposed algorithm. The contrast-to-noise ratio value of the denoised reconstruction slice, which was used as the optimal parameter, increased approximately three times compared to that of the low-dose slice while preserving the resolution. The results indicate that the proposed method successfully predicted the parameters according to the noise-reduction algorithm and PET system conditions in the sinogram domain. The proposed algorithm should help prevent misdiagnosis and provide standardized medical images for clinical application by performing appropriate noise reduction.

Effects of Low Dose Gamma Radiation on the Root Growth of Soybean Cultivars

  • Yoon, Young-Man;Cho, Hyung-In;Chang, Sung-Hee;Kim, Nam-Bum;Kim, Jae-Sung;Kim, Jeong-Gyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.5
    • /
    • pp.394-400
    • /
    • 2000
  • ${\gamma}-Radiation$ at very low doses frequently has a stimulating or hormetic effect on the growth of organism. Effects of low dose ${\gamma}-ray$ irradiation on the root growth of soybean cultivars were investigated and hormetic effects by environmental conditions were compared with the occurrence of increased economic yield, seeds of cultivars were irradiated with the dose of $0.5{\sim}20Gy$ and cultivated in growth chamber controling temperature, humidity, light, greenhouse and field respectively. To understand hormetic effect on root growth of cultivars and the difference of hormetic effect by cultivation environment, harvested root of soybean cultivars were scanned with image file, and root surface area, root length, root average diameter etc. were examined by WinRhizo program. Also, dry weight of cultivars was examined. Root growth and dry weight of soybean cultivars showed apparently hormetic effect at cultivation of growth chamber condition. In field experiment executed for whole life cycle, yields of pea were not different significantly in each ${\gamma}-ray$ irradiated cultivars but weight of one hundred peas increased in whole ${\gamma}-ray$ irradiated cultivars. Increment of yield was assumed to be induced through shortening of maturing stage caused by ${\gamma}-ray$ hormesis in early growth stage.

  • PDF

Environmental Radiation Level in Korea($1961{\sim}1980$) (한국의 환경방사선준위(環境放射線準位)($1961{\sim}1980$))

  • Rho, Chae-Shik
    • Journal of Radiation Protection and Research
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 1981
  • This report presents the results of the environmental radiation program at Korea Advanced Energy Research Institute (KAERI) ($37^{\circ}38'N,\;127^{\circ}05'E$) and its surroundings for the last two decades (January, 1961 through December, 1980). In the 1960s, the monthly mean levels of environmental external radiation encountered ranged from a low of 14.2 microroentgen per hour to a high of 42.2 microroentgen per hour with a mean of 21.7 microroentgen per hour, while in 1970s it ranged from a low of 12.4 microroentgen per hour to a high of 40.8 microroentgen per hour with a mean of 20.4 microroentgen per hour. It may, therefore, be said that environmental radiation dose rates remained almost unchanged for the two decades except for the second half of 1960s and the first half of 1970s during which the off-site and on-site patterns were frequently unlike in form and intensity with appreciable differences between average values. Particular results of interest with respect to the effects of the fallout gamma dose rate on environmental radiation show that elevated levels were encountered in association with the deposits of fresh debris from Chinese and Russian nuclear weapons tests in particular.

  • PDF

Analysis of Radiation Treatment Planning by Dose Calculation and Optimization Algorithm (선량계산 및 최적화 알고리즘에 따른 치료계획의 영향 분석)

  • Kim, Dae-Sup;Yoon, In-Ha;Lee, Woo-Seok;Baek, Geum-Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.137-147
    • /
    • 2012
  • Purpose: Analyze the Effectiveness of Radiation Treatment Planning by dose calculation and optimization algorithm, apply consideration of actual treatment planning, and then suggest the best way to treatment planning protocol. Materials and Methods: The treatment planning system use Eclipse 10.0. (Varian, USA). PBC (Pencil Beam Convolution) and AAA (Anisotropic Analytical Algorithm) Apply to Dose calculation, DVO (Dose Volume Optimizer 10.0.28) used for optimized algorithm of Intensity Modulated Radiation Therapy (IMRT), PRO II (Progressive Resolution Optimizer V 8.9.17) and PRO III (Progressive Resolution Optimizer V 10.0.28) used for optimized algorithm of VAMT. A phantom for experiment virtually created at treatment planning system, $30{\times}30{\times}30$ cm sized, homogeneous density (HU: 0) and heterogeneous density that inserted air assumed material (HU: -1,000). Apply to clinical treatment planning on the basis of general treatment planning feature analyzed with Phantom planning. Results: In homogeneous density phantom, PBC and AAA show 65.2% PDD (6 MV, 10 cm) both, In heterogeneous density phantom, also show similar PDD value before meet with low density material, but they show different dose curve in air territory, PDD 10 cm showed 75%, 73% each after penetrate phantom. 3D treatment plan in same MU, AAA treatment planning shows low dose at Lung included area. 2D POP treatment plan with 15 MV of cervical vertebral region include trachea and lung area, Conformity Index (ICRU 62) is 0.95 in PBC calculation and 0.93 in AAA. DVO DVH and Dose calculation DVH are showed equal value in IMRT treatment plan. But AAA calculation shows lack of dose compared with DVO result which is satisfactory condition. Optimizing VMAT treatment plans using PRO II obtained results were satisfactory, but lower density area showed lack of dose in dose calculations. PRO III, but optimizing the dose calculation results were similar with optimized the same conditions once more. Conclusion: In this study, do not judge the rightness of the dose calculation algorithm. However, analyzing the characteristics of the dose distribution represented by each algorithm, especially, a method for the optimal treatment plan can be presented when make a treatment plan. by considering optimized algorithm factors of the IMRT or VMAT that needs to optimization make a treatment plan.

  • PDF

Assessment of DNA damage and Chromosome aberration in human lymphocyte exposed to low dose radiation detected by FISH(fluorescence in situ hybridization) and SCGE(single cell gel electrophoresis) (FISH기법 및 단세포전기영동기법을 이용한 저선량 방사선에 의한 DNA 상해 및 염색체이상 평가)

  • Chung, Hai-Won;Kim, Su-Young;Kim, Byung-Mo;Kim, Sun-Jin;Kim, Tae-Hwan;Cho, Chul-Koo;Ha, Sung-Whan
    • Journal of Radiation Protection and Research
    • /
    • v.25 no.4
    • /
    • pp.223-232
    • /
    • 2000
  • Comparative study was performed for the assessment of DNA damage and Chromosomal aberration in human lymphocyte exposed to low dose radiation using fluorescence in situ hybridization(FISH) and single cell gel electrophoresis(SCGE). Chromosomal aberrations in human lymphocytes exposed to radiation at doses of 5, 10, 30 and 50cGy were analysed with whole chromosome-specific probes by human chromosome 1, 2 and 4 according to PAINT system. FISH with chromosome-specific probe has been used to be a valid and rapid method fer detection of chromosome rearrangements induced by low dose radiation. The frequencies of stable translocation per cell equivalents were 0.0116, 0.0375, 0.040f, 0.0727 and 0.0814 for 0, 5, 10, 30 and 50cGy, respectively, and those of dicentric were 0.00, 0.0125, 0.174, 0.0291 and 0.0407 respectively. Radiation induced DNA damage in human lymphocyte in a dose-dependent manner at low doses from 5cGy to 50cGy, which were analysed by single tell gel electrophoresis(SCGE). From above results, FISH seemed to be useful for radiation biodosimetry by which the frequencies of stable aberrations in human lymphocyte can be observed more easily than by conventional method and SCGE also seemed to be sensitive method f9r detecting DNA damage by low dose radiation exposure, so that those methods will improve our technique to perform meaningful biodosimetry for radiation at low doses.

  • PDF