• Title/Summary/Keyword: Low Computational Complexity

Search Result 488, Processing Time 0.03 seconds

Low-complexity Carrier Frequency Offset Estimation using A Novel Region Boundary for OFDM-based WLAN Systems (영역 경계 기법을 사용한 OFDM기반 WLAN 시스템의 반송파 주파수 오프셋 추정 기법)

  • Cho, Jong-Min;Kim, Jin-Sang;Cho, Won-Kyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3A
    • /
    • pp.254-259
    • /
    • 2010
  • In this paper, we propose a low-complexity carrier frequency offset (CFO) estimation algorithm for OFDM based wireless LAN, IEEE 802.11a. The complexity of the arctangent operation to calculate the argument of auto-correlation for CFO estimation is reduced by a novel range pointer method. The proposed algorithm estimates fine CFO value first and then based on the fine CFO value, simple criteria is used for the boundary decision of integer CFO estimation. The simulation results show that the performance of the proposed algorithm is slightly better than the conventional method while the computational complexity is reduced by 50%. Furthermore, the proposed method can be easily implemented for the low complex next generation MIMO-OFDM based WLAN systems.

Low-complexity de-mapping algorithms for 64-APSK signals

  • Bao, Junwei;Xu, Dazhuan;Zhang, Xiaofei;Luo, Hao
    • ETRI Journal
    • /
    • v.41 no.3
    • /
    • pp.308-315
    • /
    • 2019
  • Due to its high spectrum efficiency, 64-amplitude phase-shift keying (64-APSK) is one of the primary technologies used in deep space communications and digital video broadcasting through satellite-second generation. However, 64-APSK suffers from considerable computational complexity because of the de-mapping method that it employs. In this study, a low-complexity de-mapping method for (4 + 12 + 20 + 28) 64-APSK is proposed in which we take full advantage of the symmetric characteristics of each symbol mapping. Moreover, we map the detected symbol to the first quadrant and then divide the region in this first quadrant into several partitions to simplify the formula. Theoretical analysis shows that the proposed method requires no operation of exponents and logarithms and involves only multiplication, addition, subtraction, and judgment. Simulation results validate that the time consumption is dramatically decreased with limited degradation of bit error rate performance.

Low-Complexity Motion Estimation for H.264/AVC Through Perceptual Video Coding

  • An, Byoung-Man;Kim, Young-Seop;Kwon, Oh-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.8
    • /
    • pp.1444-1456
    • /
    • 2011
  • This paper presents a low-complexity algorithm for an H.264/AVC encoder. The proposed motion estimation scheme determines the best coding mode for a given macroblock (MB) by finding motion-blurred MBs; identifying, before motion estimation, an early selection of MBs; and hence saving processing time for these MBs. It has been observed that human vision is more sensitive to the movement of well-structured objects than to the movement of randomly structured objects. This study analyzed permissible perceptual distortions and assigned a larger inter-mode value to the regions that are perceptually less sensitive to human vision. Simulation results illustrate that the algorithm can reduce the computational complexity of motion estimation by up to 47.16% while maintaining high compression efficiency.

Efficient Convolutional Neural Network with low Complexity (저연산량의 효율적인 콘볼루션 신경망)

  • Lee, Chanho;Lee, Joongkyung;Ho, Cong Ahn
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.685-690
    • /
    • 2020
  • We propose an efficient convolutional neural network with much lower computational complexity and higher accuracy based on MobileNet V2 for mobile or edge devices. The proposed network consists of bottleneck layers with larger expansion factors and adjusted number of channels, and excludes a few layers, and therefore, the computational complexity is reduced by half. The performance the proposed network is verified by measuring the accuracy and execution times by CPU and GPU using ImageNet100 dataset. In addition, the execution time on GPU depends on the CNN architecture.

Efficiency Pixel Recomposition Algorithm for Fractional Motion Estimation (부화소 움직임 추정을 위한 효과적인 화소 재구성 알고리즘)

  • Shin, Wang-Ho;SunWoo, Myung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.1
    • /
    • pp.64-70
    • /
    • 2011
  • In an H.264/AVC video encoder, the motion estimation at fractional pixel accuracy improves a coding efficiency and image quality. However, it requires additional computation overheads for fractional search and interpolation, and thus, reducing the computation complexity of fractional search becomes more important. This paper proposes a Pixel Re-composition Fractional Motion Estimation (PRFME) algorithm for an H.264/AVC video encoder. Fractional Motion Estimation performs interpolation for the overlapped pixels which increases the computational complexity. PRFME can reduce the computational complexity by eliminating the overlapped pixel interpolation. Compared with the fast full search, the proposed algorithm can reduce 18.1% of computational complexity, meanwhile, the maximum PSNR degradation is less than 0.067dB. Therefore, the proposed PRFME algorithm is quite suitable for mobile applications requiring low power and complexity.

On a Reduction of Pitch Search Time for IMBE Vocoder by Using the Spectral AMDF (SAMDF를 이용한 IMBE VOCODER의 피치 검색 시간 단축에 관한 연구)

  • 홍성훈
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06c
    • /
    • pp.155-158
    • /
    • 1998
  • IMBE(Improved Multi-Band Excitation) vocoders exhibit good performance at low data rates. The major drawback to IMBE coders is their large computational requirements. In this paper, thus, we propose a new pitch search method that preserves the quality of the IMBE vocoder with reduced complexity. The basic idea is to reduce computation complexity of the pitch searching by using the SAMDF. Applying the proposed method to the IMBE vocoder, we can get approximately 52.02% searching time reduction in the pitch search. There is no difference in voice quality between conventional IMBE and proposed IMBE.

  • PDF

On a Reduction of Codebook Searching Time by using RPE Searching Tchnique in the CELP Vocoder (RPE 검색을 이용한 CELP 보코더의 불규칙 코드북 검색)

  • 김대식
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1995.06a
    • /
    • pp.141-145
    • /
    • 1995
  • Code excited linear prediction speech coders exhibit good performance at data rates as low as 4800 bps. The major drawback to CELP type coders is their large computational requirements. In this paper, we propose a new codebook search method that preserves the quality of the CELP vocoder with reduced complexity. The basic idea is to restrict the searching range of the random codebook by using a searching technique of the regular pulse excitation. Applying the proposed method to the CELP vocoder, we can get approximately 48% complexity reduction in the codebook search.

  • PDF

Low-complexity implementation of OFDMA timing delay detector with multiple receive antennas for broadband wireless access (광대역 무선 액세스를 위한 다중 수신안테나를 갖는 OFDMA 시스템의 낮은 복잡도의 타이밍 딜레이 추정기 구현)

  • Won, Hui-Chul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.3
    • /
    • pp.19-30
    • /
    • 2007
  • In this paper, we propose low-complexity implementation of orthogonal frequency division multiple access (OFDMA) timing delay detector with multiple receive antennas for broadband wireless access (BWA). First, in order to reduce the computational complexity, the detection structure which rotates the phase of the received ranging symbols is introduced. Second, we propose the detection structure with the N-point/M-interval fast Fourier transform structure and a frequency-domain average-power estimator for complexity reduction without sacrificing the system performance. Finally, simulation results for the proposed structures and complexity comparison of the existing structure with the proposed detectors are presented.

  • PDF

Advanced Real-Time Rate Control for Low Bit Rate Video Communication

  • Kim, Yoon
    • Journal of the Korea Computer Industry Society
    • /
    • v.7 no.5
    • /
    • pp.513-520
    • /
    • 2006
  • In this paper, we propose a novel real-time frame-layer rate control algorithm using sliding window method for low bit rate video coding. The proposed rate control method performs bit allocation at the frame level to minimize the average distortion over an entire sequence as well as variations in distortion between frames. A new frame-layer rate-distortion model is derived, and a non-iterative optimization method is used for low computational complexity. In order to reduce the quality fluctuation, we use a sliding window scheme which does not require the pre-analysis process. Therefore, the proposed algorithm does not produce time delay from encoding, and is suitable for real-time low-complexity video encoder. Experimental results indicate that the proposed control method provides better visual and PSNR performance than the existing TMN8 rate control method.

  • PDF

New Video Compression Method based on Low-complexity Interpolation Filter-bank (저 복잡도 보간 필터 뱅크 기반의 새로운 비디오 압축 방법)

  • Nam, Jung-Hak;Jo, Hyun-Ho;Sim, Dong-Gyu;Choi, Byeong-Doo;Cho, Dae-Sung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.5
    • /
    • pp.165-174
    • /
    • 2010
  • The H.264/AVC standard obtained better performance than previous compression standards, but it also increased the computational complexity of CODEC simultaneously. Various techniques recently included at the KTA software developed by VCEG also were increasing its complexity. Especially adaptive interpolation filter has more complexity than two times due to development for coding efficiency. In this paper, we propose low-complexity filter bank to improve speed up of decoding and coding gain. We consists of filter bank of a fixed-simple filter for low-complexity and adaptive interpolation filter for high coding efficiency. Then we compensated using optimal filter at each macroblock-level or frame-level. Experimental results shows a similar coding efficiency compared to existing adaptive interpolation filter and decoding speed of approximately 12% of the entire decoder gained.