• Title/Summary/Keyword: Low Computational Complexity

Search Result 488, Processing Time 0.03 seconds

Low complexity hybrid layered tabu-likelihood ascent search for large MIMO detection with perfect and estimated channel state information

  • Sourav Chakraborty;Nirmalendu Bikas Sinha;Monojit Mitra
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.418-432
    • /
    • 2023
  • In this work, we proposed a low-complexity hybrid layered tabu-likelihood ascent search (LTLAS) algorithm for large multiple-input multiple-output (MIMO) system. The conventional layered tabu search (LTS) approach involves many partial reactive tabu searches (RTSs), and each RTS requires an initialization and searching phase. In the proposed algorithm, we restricted the upper limit of the number of RTS operations. Once RTS operations exceed the limit, RTS will be replaced by low-complexity likelihood ascent search (LAS) operations. The block-based detection approach is considered to maintain a higher signal-to-noise ratio (SNR) detection performance. An efficient precomputation technique is derived, which can suppress redundant computations. The simulation results show that the bit error rate (BER) performance of the proposed detection method is close to the conventional LTS method. The complexity analysis shows that the proposed method has significantly lower computational complexity than conventional methods. Also, the proposed method can reduce almost 50% of real operations to achieve a BER of 10-3.

Adaptive De-interlacing Algorithm using Method Selection based on Degree of Local Complexity (지역 복잡도 기반 방법 선택을 이용한 적응적 디인터레이싱 알고리듬)

  • Hong, Sung-Min;Park, Sang-Jun;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4C
    • /
    • pp.217-225
    • /
    • 2011
  • In this paper, we propose an adaptive de-interlacing algorithm that is based on the degree of local complexity. The conventional intra field de-interlacing algorithms show the different performance according to the ways which find the edge direction. Furthermore, FDD (Fine Directional De-interlacing) algorithm has the better performance than other algorithms but the computational complexity of FDD algorithm is too high. In order to alleviate these problems, the proposed algorithm selects the most efficient de-interacing algorithm among LA (Line Average), MELA (Modified Edge-based Line Average), and LCID (Low-Complexity Interpolation Method for De-interlacing) algorithms which have low complexity and good performance. The proposed algorithm is trained by the DoLC (Degree of Local Complexity) for selection of the algorithms mentioned above. Simulation results show that the proposed algorithm not only has the low complexity but also performs better objective and subjective image quality performances compared with the conventional intra-field methods.

Low Complexity Single Image Dehazing via Edge-Preserving Transmission Estimation and Pixel-Based JBDC (에지 보존 전달량 추정 및 픽셀 단위 JBDC를 통한 저 복잡도 단일 영상 안개 제거)

  • Kim, Jongho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.1-7
    • /
    • 2019
  • This paper presents low-complexity single-image dehazing to enhance the visibility of outdoor images that are susceptible to degradation due to weather and environmental conditions, and applies it to various devices. The conventional methods involve refinement of coarse transmission with high computational complexity and extensive memory requirements. But the proposed transmission estimation method includes excellent edge-preserving performance from comparison of the pixel-based dark channel and the patch-based dark channel in the vicinity of edges, and transmission can be estimated with low complexity since no refinement is required. Moreover, it is possible to accurately estimate transmissions and adaptively remove haze according to the characteristics of the images via prediction of the atmospheric light for each pixel using joint bright and dark channel (JBDC). Comprehensive experiments on various hazy images show that the proposed method exhibits reduced computational complexity and excellent dehazing performance, compared to the existing methods; thus, it can be applied to various fields including real-time devices.

Fast 3D Mesh Compression Using Shared Vertex Analysis

  • Jang, Euee-Seon;Lee, Seung-Wook;Koo, Bon-Ki;Kim, Dai-Yong;Son, Kyoung-Soo
    • ETRI Journal
    • /
    • v.32 no.1
    • /
    • pp.163-165
    • /
    • 2010
  • A trend in 3D mesh compression is codec design with low computational complexity which preserves the input vertex and face order. However, this added information increases the complexity. We present a fast 3D mesh compression method that compresses the redundant shared vertex information between neighboring faces using simple first-order differential coding followed by fast entropy coding with a fixed length prefix. Our algorithm is feasible for low complexity designs and maintains the order, which is now part of the MPEG-4 scalable complexity 3D mesh compression standard. The proposed algorithm is 30 times faster than MPEG-4 3D mesh coding extension.

An Efficient Adaptive Modulation Scheme for Wireless OFDM Systems

  • Lee, Chang-Wook;Jeon, Gi-Joon
    • ETRI Journal
    • /
    • v.29 no.4
    • /
    • pp.445-451
    • /
    • 2007
  • An adaptive modulation scheme is presented for multiuser orthogonal frequency-division multiplexing systems. The aim of the scheme is to minimize the total transmit power with a constraint on the transmission rate for users, assuming knowledge of the instantaneous channel gains for all users using a combined bit-loading and subcarrier allocation algorithm. The subcarrier allocation algorithm identifies the appropriate assignment of subcarriers to the users, while the bit-loading algorithm determines the number of bits given to each subcarrier. The proposed bit-loading algorithm is derived from the geometric progression of the additional transmission power required by the subcarriers and the arithmetic-geometric means inequality. This algorithm has a simple procedure and low computational complexity. A heuristic approach is also used for the subcarrier allocation algorithm, providing a trade-off between complexity and performance. Numerical results demonstrate that the proposed algorithms provide comparable performance with existing algorithms with low computational cost.

  • PDF

Fractal image compression based on discrete wavelet transform domain (이산 웨이브렛 변환 영역에 기반한 프랙탈 영상 압축)

  • 배성호;박길흠
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.7
    • /
    • pp.1654-1667
    • /
    • 1996
  • The conventional fractal image compression methods have high computational complexity at encoding reduce PSNR at low bit rate and havehighly visible blocking effects in a reconstructed image. In this paper we propose a fractal image compression method based on disctete wavelet transform domain, which takes the absolute value of discrete wavelet transform coefficient, and assembles the discrete wavelet tranform coefficients of different highpass subbands corresponding to the same spatial block and then applies "0" encoding according to the energy of each range blocks. The proposed method improved PSNR at low bit rate and reduced computational complexity at encoding distinctly. Also, this method can achieve a blockless reconstructed image and perform hierarchical decoding without recursive constractive transformation. Computer simulations with several test images show that the proposed method shows better performance than convnetional fractal coding methods for encoding still pictures. pictures.

  • PDF

IEM-based Tone Injection for Peak-to-Average Power Ratio Reduction of Multi-carrier Modulation

  • Zhang, Yang;Zhao, Xiangmo;Hou, Jun;An, Yisheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4502-4517
    • /
    • 2019
  • Tone Injection (TI) scheme significantly reduces the peak-to-average power ratio (PAPR) of Multicarrier Modulation (MCM). However, the computational complexity of the TI scheme rises exponentially with the extra freedom constellation number. Therefore, a novel immune evolutionary mechanism-based TI scheme is proposed in this paper to reduce the computational complexity. By restraining undesirable degeneracy during the processing, this IEM scheme can dramatically increase the population fitness. Monte Carlo results show that proposed IEM-based TI scheme can achieve a significant PAPR and BER improvement with a low complexity.

High-Performance and Low-Complexity Image Pre-Processing Method Based on Gradient-Vector Characteristics and Hardware-Block Sharing

  • Kim, Woo Suk;Lee, Juseong;An, Ho-Myoung;Kim, Jooyeon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.6
    • /
    • pp.320-322
    • /
    • 2017
  • In this paper, a high-performance, low-area gradient-magnitude calculator architecture is proposed, based on approximate image processing. To reduce the computational complexity of the gradient-magnitude calculation, vector properties, the symmetry axis, and common terms were applied in a hardware-resource-shared architec-ture. The proposed gradient-magnitude calculator was implemented using an Altera Cyclone IV FPGA (EP4CE115F29) and the Quartus II v.16 device software. It satisfied the output-data quality while reducing the logic elements by 23% and the embedded multipliers by 76%, compared with previous work.

A low complexity ZF Equalization for OFDM Systems over Time-varying Channels (OFDM 시스템을 위한 복잡도가 감소된 ZF 등화기법)

  • Park, Ji-Hyun;Hwang, Seung-Hoon;Whang, Keum-Chan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.4
    • /
    • pp.1-8
    • /
    • 2008
  • In orthogonal frequency division multiplexing (OFDM) system the time selectivity of wireless channel introduces intercarrier interference (ICI), which degrades system performance in proportion to Doppler frequency. To mitigate the ICI effect, we can generally employ a classical zero-forcing (ZF) equalizer. However, the ZF scheme requires an inverse of a large matrix, which results in prohibitively high computational complexity. In this paper, we propose a low complexity ZF equalization scheme for suppressing the ICI caused by highly time-varying channels in OFDM systems. From the fact that the ICI on a subcarrier is mainly caused by several neighboring subcarriers, the proposed scheme exploits a numerical approximation for matrix inversion based on Neumann's Series (truncated second order). To further improve performance, the partial ICI cancellation technique is also used with reduced complexity. Complexity analysis and simulation results show that the proposed scheme provides the advantage of reducing computational complexity significantly, while achieving almost the same performance as that of the classical ZF a roach.

Low-complexity generalized residual prediction for SHVC

  • Kim, Kyeonghye;Jiwoo, Ryu;Donggyu, Sim
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.6
    • /
    • pp.345-349
    • /
    • 2013
  • This paper proposes a simplified generalized residual prediction (GRP) that reduces the computational complexity of spatial scalability in scalable high efficiency video coding (SHVC). GRP is a coding tool to improve the inter prediction by adding a residual signal to the inter predictor. The residual signal was created by carrying out motion compensation (MC) of both the enhancement layer (EL) and up-sampled reference layer (RL) with the motion vector (MV) of the EL. In the MC process, interpolation of the EL and the up-sampled RL are required when the MV of the EL has sub-pel accuracy. Because the up-sampled RL has few high frequency components, interpolation of the up-sampled RL does not give significantly new information. Therefore, the proposed method reduces the computational complexity of the GRP by skipping the interpolation of the up-sampled RL. The experiment on SHVC software (SHM-2.0) showed that the proposed method reduces the decoding time by 10 % compared to conventional GRP. The BD-rate loss of the proposed method was as low as 1.0% on the top of SHM-2.0.

  • PDF