• Title/Summary/Keyword: Low Carbon Society

Search Result 3,358, Processing Time 0.033 seconds

Ambient Adsorption of Low-level Carbon Dioxide by Metal Treated Activated Carbon (양이온 함침 활성탄에서의 저농도 이산화탄소 상온 흡착특성)

  • Lee, Kyung-Mi;Jo, Young-Min
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.4
    • /
    • pp.316-324
    • /
    • 2009
  • Carbon based sorbents for $CO_2$ adsorption were prepared by impregnation with alkali metals ($Li^+$, $K^+$) and alkaline earth metals ($Ca^{2+}$, $Mg^{2+}$). BET surface area of test sorbents was lower than the intrinsic activated carbon. In particular, impregnation of $Ca^{2+}$ or $Mg^{2+}$ resulted in lower surface area of specific adsorption sites than that of $Li^+$ or $K^+$. While the adsorption capacity for $CO_2$ was high in the sorbents containing $Ca^{2+}$ and $Mg^{2+}$, strong interaction with $CO_2$ would cause to drop the capacity after regeneration. The adsorption was found high relatively in the flow with a high concentration of $CO_2$ and in a low flow rate. The adsorption isotherm for the present modified AC sorbents fits well with the Freundlich model.

A study on the UI design and program development for integrated management of carbon data in city (도시 탄소데이터 통합관리를 위한 프로그램 설계 방안 및 UI 연구)

  • Park, Jun-Hyoung;Kim, Seong-Sik;Kim, Jong-Woo;Choi, Guei-Tai
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.2
    • /
    • pp.108-117
    • /
    • 2013
  • Studies on the regulation and measurement of greenhouse gases(GHGs) emissions have been carrying out for global wanning. In order to reduce greenhouse gas emissions, many countries have been promoting the Emissions Trading System and projects of the Joint Implementation(JI) and Clean Development Mechanism(CDM). These country's GHG emissions have been measured calculation criteria based on the Intergovernmental Panel on Climate Change(IPCC) Guidelines. In order to respond to GHGs regulation, in each country, it is planing to build a Low-Carbon City. The system has been developed for calculating GHGs emissions from companies and institutions in their respective countries. However, the system can monitor the GHGs per city, has not been developed. In this paper, it is studied to design the User Interface and to develop integrated monitoring program for Low-carbon city. This program will make possible monitoring and management, statistics, and reports written by using each data in units of cities.

A Study on Friction and Wear Behavior of Carbon Fiber Reinforced Polyetheretherketone (탄소 섬유 보강 폴리에테르에테르케톤의 마찰 및 마모 거동에 관한 연구)

  • Ryu, Seong-Guk;Kim, Gyeong-Ung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.6
    • /
    • pp.930-937
    • /
    • 2001
  • The friction and wear behavior of short carbon fiber reinforced polyetheretherketone was studied experimentally under dry sliding conditions against SCM440(AISI 4140) disks with different surface roughness and hardness at the low sliding speeds and the high pressures on a pin-on-disk apparatus. Under the low disk surface roughness value the earsplitting noise and stick-slip were occurred. The increased adhesion friction and wear factor with stick-slip made the friction and wear behavior worse. Under the high disk surface hardness the break and falling-off of carbon fibers were accelerated. The carbon fibers fallen off from the matrix were ground into powder between two wear surfaces and this phenomenon caused abrasive friction and wear factor to increase. So the friction and wear behavior became worse. With the transfer film made of wear particles formed on a disk, the carbon powder film formed on a pin lowered a friction coefficient.

Carbon Composite Material Using Nickel Nano-Powder Impregnation Research on Electromagnetic Shielding Effect (니켈나노파우더 함침기법을 이용한 탄소복합소재의 전자파차폐 효과에 관한 연구)

  • Seo, Kwang-Su;Kwac, Lee-Ku
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.49-55
    • /
    • 2020
  • In order to improve the electromagnetic shielding rate of Carbon Fiber (CF), it was produced using the nickel nano-powder impregnating method. Using two types of nickel powder having thicknesses of 50 ㎛ and 100 ㎛, and a thermoplastic elastomer resin, a compound containing 10-20% nickel content was mixed and then manufactured through an extruder. The CF coated with the compound was woven and manufactured using a 1-ply specimen. The final nickel content of the specimen was verified using TGA and the distribution of nickel powder on the CF surface was verified using SEM. The metal shows a high shielding rate in the low-frequency band, but the shielding rate decreases at higher-frequency bands. The CF improves at the higher frequency band, and metals reflect electromagnetic waves while carbon absorbs electromagnetic waves. The study of shielding materials, which are stronger and lighter than metal, by using CF lighter than metal and enabling the shielding rate from low-frequency band to high-frequency band, confirmed that the larger the area coated with nickel nano-powder, the better the electromagnetic shielding performance. In particular, CF coated with a thickness of 100 ㎛ has a shielding rate similar to that of copper and can also be used for EV/HEV automotive cables and other applications in the future.

The electrical and corrosion properties of polyphenylene sulfide/carbon composite coated stainless steel bipolar plate for PEM fuel cell

  • Lee, Yang-Bok;Kim, Kyung-Min;Park, Yu-Chun;Hwang, Eun-Ji;Lim, Dae-Soon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.89.2-89.2
    • /
    • 2011
  • Stainless steel bipolar plates have many advantage such as high electrical conductivity and mechanical strength and low fabrication cost. However, they need a passivation layer due to low corrosion resistance under PEM fuel cell operation condition. In this study, polyphenyene sulfide(PPS)/carbon composite coated stainless steel bipolar plates were fabricated by compression molding method after PPS/carbon composite sprayed on the stainless steel plate. PPS and carbon were chosen as the binder and conductive filler of passivation layer, respectively. The interfacial contact resistance and corrosion resistance of PPS/carbon composite coated stainless steel bipolar plates were investigated and compared to the stainless steel. The PPS/carbon composite coated stainless steel compared to stainless steel was improved interfacial contact resistance. The results of the potentiodynamic and potentiostatic measurements also showed that the PPS/carbon composite coated stainless steel did not corroded under PEM fuel cell operating conditions.

  • PDF

Acetate Consumption Activity Directly Determines the Level of Acetate Accumulation During Escherichia coli W3110 Growth

  • Shin, Soo-An;Chang, Dong-Eun;Pan, Jae-Gu
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1127-1134
    • /
    • 2009
  • Escherichia coli excretes acetate during aerobic growth on glycolytic carbon sources, which has been explained as an overflow metabolism when the carbon flux into the cell exceeds the capacity of central metabolic pathways. Nonacetogenic growth of E. coli on gluconeogenic carbon sources like succinate or in carbon-limited slow growth conditions is believed an evidence for the explanation. However, we found that a strain defected in the acs (acetyl Co-A synthetase) gene, the product of which is involved in scavenging acetate, accumulated acetate even in succinate medium and in carbon-limited low growth rate condition, where as its isogenic parental strain did not. The acs promoter was inducible in noncatabolite repression condition, whereas the expression of the ackA-pta operon encoding acetate kinase and phosphotransacetylase for acetate synthesis was constitutive. Results in this study suggest that E. coli excretes and scavenges acetate simultaneously in the carbon-limited low growth condition and in nonacetogenic carbon source, and the activity of the acetate consumption pathway directly affects the accumulation level of acetate in the culture broth.

Welding behavior between Zn-coated steel plate and free cutting carbon steel rod by Nd:YAG laser beam (Nd:YAG 레이저빔을 이용한 아연도금강판(SECC)과 쾌삭강봉(SUM24L)의 용접에 관한 연구)

  • 노영태;김병철;김도훈;윤갑식
    • Laser Solutions
    • /
    • v.4 no.3
    • /
    • pp.30-39
    • /
    • 2001
  • This work was tamed out to apply a laser welding technique in joining between a Zn coated low carbon steel plate(SECC) and a free cutting carbon steel shaft(SUM24L) with or without W coating. Experiments were carried out and analysed by applying the FD(factorial design)method to obtain the optimum Laser welding condition. Optical microscopy, SEM, TEM and XRD analyses were performed in order to observe the microstructures in the fusion zone and the HAZ. Mechanical properties of the welded specimens were examined by microhardness test, tensile test and twist test. There was no flawed Zn in the fusion zone by EDS analysis. This means that during the welding process, Zn gas could be eliminated by appropriate shielding gas flow rate and butt welding gap. Ni coating itself did not influence on the tensile strength and hardness. However, twist bending strength and the weld depth of the Ni-coated free cutting carbon steel were lower as compared with those of the uncoated free cutting carbon steel. It was attributed to a lower absorbance of laser beam to the shin Ni surface. According to the results of the factorial design tests, the twist bending strength of welded specimens was primarily affected by pulse width, laser power, frequency and speed.

  • PDF

Effects of Corrosion Resistance Characteristics of Opponent Materials in relative Motion on Sliding Wear Behavior of Mild Carbon Steel (상대재 내식성이 철강재료의 미끄럼마모 특성에 미치는 영향)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.139-147
    • /
    • 2019
  • This study investigates the effects of corrosion resistance characteristics of opponent materials in relative motion on the sliding wear behavior of mild carbon steel. Pin specimens made of mild carbon steel are tested at several sliding speeds against mating discs made of two types of alloyed steels, such as type D2 tool steel (STD11) and type 420 stainless steel (STS420J2), with different corrosion resistance characteristics in a pin-on-disc type sliding wear test machine. The results clearly show that the sliding wear behavior of mild carbon steel is influenced by the corrosion resistance characteristics of the mating disc materials at low sliding speeds. However, the sliding wear behavior at high sliding speeds is irrelevant to the characteristics because of the rising temperature. During the steady state wear period, the sliding wear rate of mild carbon steel against the type 420 stainless steel at a sliding speed of 0.5 m/s increases considerably unlike against the type D2 tool steel. This may be because the better corrosion resistance characteristics achieve a worse tribochemical reactivity. However, during the running-in wear period at low sliding speeds, the wear behavior of mild carbon steel is influenced by the microstructure after heat treatment of the mating disc materials rather than by their corrosion resistance characteristics.

Atmospheric Corrosion Behavior of Carbon Steel by the Outdoor Exposure Test for 10 Years in Korea

  • Yoo, Y.R.;Choi, S.H.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.184-199
    • /
    • 2022
  • Steel was exposed in an atmospheric environment, and atmospheric environmental factors that include chloride, humidity, SO2, NO2 etc. induced the corrosion of steel. Corrosivity categories classified by SO2 and chloride deposition rate were low, but those classified by TOW were high in the Korean Peninsula, and on these environmental categories, the corrosivity of atmospheres classified by corrosion rate in carbon steel was low medium, C2-C3, and medium, C3 for zinc, copper, and aluminum. This work performed the outdoor exposure test for 10 years at 14 areas in Korea and calculated the atmospheric corrosion rate of carbon steel. The atmospheric corrosion behavior of carbon steel is discussed based on the various corrosion factors. When the corrosion product forms on carbon steel by atmospheric corrosion, cracks may also be formed, and through these cracks, the environmental factors can penetrate into the interior of the product, detach some of the corrosion products and finally corrode locally. Thus, the maximum corrosion rate was about 7.3 times greater than the average corrosion rate. The color difference and glossiness of carbon steel by the 10 year-outdoor exposure tests are discussed based on the corrosion rate and the environmental factors.

A Development of Connection Piece Steel Casting for the Offshore Structures Using High Impact Value with Low Temperature & High Strength Casting Steel Material (고강도 및 저온 고충격 주강소재를 이용한 해양플렌트용 커넥트 주강부품 개발)

  • Kim, Tae-Eon;Park, Sang-Sik;Kang, Chung-Gil
    • Journal of Korea Foundry Society
    • /
    • v.30 no.4
    • /
    • pp.151-156
    • /
    • 2010
  • The high-strength low-alloy (HSLA) steels have low carbon contents (0.05~0.25% C) in order to produce adequate formability and weldability, and they have manganese contents up to 1.7%. Small quantities of silicon, chromium, nickel, copper, aluminum, molybdenum are used in various combinations. The results contained in this paper can provide the valuable information on the development of $-40^{\circ}C$ low temperature HSLA. Furthermore, the present experimental data will provide important database for casting steel materials of the offshore structure.