• Title/Summary/Keyword: Low C/N Ratio

Search Result 563, Processing Time 0.027 seconds

An experimental study on the characteristics of the swirl ratio distribution with an intake port geometry (흡기포트 형상에 따른 선회비 분포특성에 관한 실험적 연구)

  • Lee, Ji-Geun;Ju, Bong-Cheol;No, Byeong-Jun;Gang, Sin-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.6
    • /
    • pp.725-734
    • /
    • 1997
  • The effect of helical intake port geometry on in-cylinder swirl flow characteristics was studied. Two helical intake ports were selected to change swirl ratio, mean flow coefficient with the variation of valve lifts, valve eccentricity ratios and axial distance. The measurements were made by using an impulse swirl meter. The port B modified to increase the swirl ratio( $R_{s}$) had the tendency of the increased non-dimensional rig swirl ( $N_{r}$) distribution in comparison with that of the port A. And the $N_{r}$ distribution was remarkably improved at low valve lifts. The modification of the geometry to increase the swirl ratio ( $R_{s}$) in helical intake port resulted in the decrease of the mean flow coefficient ( $C_{f(mean)}$) regardless of valve eccentricity ratio ( $N_{y}$). And also non-dimensional rig swirl ( $N_{r}$) in the high valve lift affected the calculation of swirl ratio considerably.onsiderably.

Evaluation of Oxic Denitrification in A2O Fixed Biofilm System through Mass Balance (물질수지를 이용한 A2O 고정생물막법에서의 호기탈질평가)

  • Yoon, Cho-Hee;Park, Seung-Hwan;Lee, Sang-Hoon;Kim, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.231-239
    • /
    • 2000
  • This study was investigated to estimate optimal conditions and biological oxic denitrification to treat wastewater with low C/N ratio and high strength total inorganic nitrogen (TIN) concentration by using $A_2O$ fixed biofilm system. The lab-scale experimental system packed with media, which were composed of polyvinylidene chloride fiber (oxic basin) and ceramic ball (anaerobic and anoxic basin), was used. This system was operated with various influent alkalinities at the C/N(TOC/TIN) ratio of 0.5. The study results showed that TOC were removed over 96.0% at all operation conditions. The removal efficiencies over 93.5% for $NH_4{^+}-N$ and 81.8% for TIN were obtained at the alkalinity of about 1210mg/L(Run 5). Among the removal of TIN, 64.9% was occurred by biological denitrification at an oxic basin. It was confirmed through mass balance of alkalinity and nitrogen that the amount of alkalinity produced during biological denitrification at oxic basin was 2.49~3.46 mg Alkalinity/mg $NO_2{^-}-N$, ${\Delta}TOC/{\Delta}DEN$ of 0.34 (Run 5) was obtained at an oxic basin, which was less than the theoretical value of 1.22.

  • PDF

Fabrication of Tantalum Nitride Thin-Film as High-temperature Strain Gauges (고온 스트레인 게이지용 질화탄탈박막의 제작)

  • 김재민;최성규;남효덕;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.97-100
    • /
    • 2001
  • This paper presents the characteristics of Ta-N thin-film strain gauges as high-temperature strain gauges, which were deposited on Si substrate by DC reactive magnetron sputtering in an argon-nitrogen atmosphere(Ar-(4∼16 %)N$_2$). These films were annealed for 1 hour in 2x10$\^$-6/ Torr vaccum furnace range 500∼1000$^{\circ}C$. The optimized conditions of Ta-N thin-film strain gauges were annealing condition(900$^{\circ}C$, 1 hr.) in 8% N$_2$ gas flow ratio deposition atmosphere. Under optimum conditions, the Ta-N thin-films for strain gauges is obtained a high resistivity, $\rho$=768.93 ${\mu}$Ω cm, a low temperature coefficient of resistance, TCR=-84 ppm/$^{\circ}C$ and a high temporal stability with a good longitudinal gauge factor, GF=4.12.

  • PDF

THE CHEMICAL PROPERTIES OF PG QUASARS

  • Shin, Jaejin;Woo, Jong-Hak;Nagao, Tohru
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.74.2-74.2
    • /
    • 2012
  • Metallicity is an important tracer of star formation in galaxy evolution. Based on the flux ratios of broad emission lines, AGN metallicity has shown a correlation with AGN luminosity. However, it is not clear what physical parameter drives the observed correlation. Using a sample 69 Palomar-Green QSOs at low-z (z<0.5), we determine BLR gas metallicity from emission line flux ratios, i.e., N V1240/C IV1549, (Si IV1398+O IV1402)/C IV1549 and N V1240/He II1640 based on the UV spectra from the HST and IUE archives. We compare BLR gas metallicity with various AGN properties, i.e., black hole mass, AGN luminosity and Eddington ratio, in order to investigate physical connection between metal enrichment and AGN activity. In contrast to high-z QSOs, which show the correlation between metallicity and black hole mass, we find that the metallicity of low-z QSOs correlates with Eddington ratio, but not with black hole mass, suggesting that metallicity enrichment mechanism is different between low-z and high-z.

  • PDF

PEMOCVD of Ti(C,N) Thin Films on D2 Steel and Si(100) Substrates at Low Growth Temperatures

  • Kim, Myung-Chan;Heo, Cheol-Ho;Boo, Jin-Hyo;Cho,Yong-Ki;Han, Jeon-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.211-211
    • /
    • 1999
  • Titanium nitride (TiN) thin films have useful properties including high hardness, good electrical conductivity, high melting point, and chemical inertness. The applications have included wear-resistant hard coatings on machine tools and bearings, decorative coating making use of the golden color, thermal control coatings for widows, and erosion resistant coatings for spacecraft plasma probes. For all these applications as feature sizes shrink and aspect ratios grow, the issue of good step coverage becomes increasingly important. It is therefore essential to manufacture conformal coatings of TiN. The growth of TiN thin films by chemical vapor deposition (CVD) is of great interest for achieving conformal deposition. The most widely used precursor for TiN is TiCl4 and NH3. However, chlorine impurity in the as-grown films and relatively high deposition temperature (>$600^{\circ}C$) are considered major drawbacks from actual device fabrication. To overcome these problems, recently, MOCVD processes including plasma assisted have been suggested. In this study, therefore, we have doposited Ti(C, N) thin films on Si(100) and D2 steel substrates in the temperature range of 150-30$0^{\circ}C$ using tetrakis diethylamido titanium (TDEAT) and titanium isopropoxide (TIP) by pulsed DC plamsa enhanced metal-organic chemical vapor deposition (PEMOCVD) method. Polycrystalline Ti(C, N) thin films were successfully grown on either D2 steel or Si(100) surfaces at temperature as low as 15$0^{\circ}C$. Compositions of the as-grown films were determined with XPS and RBS. From XPS analysis, thin films of Ti(C, N) with low oxygen concentration were obtained. RBS data were also confirmed the changes of stoichiometry and microhardness of our films. Radical formation and ionization behaviors in plasma are analyzed by optical emission spectroscopy (OES) at various pulsed bias and gases conditions. H2 and He+H2 gases are used as carrier gases to compare plasma parameter and the effect of N2 and NH3 gases as reactive gas is also evaluated in reduction of C content of the films. In this study, we fond that He and H2 mixture gas is very effective in enhancing ionization of radicals, especially N resulting is high hardness. The higher hardness of film is obtained to be ca. 1700 HK 0.01 but it depends on gas species and bias voltage. The proper process is evident for H and N2 gas atmosphere and bias voltage of 600V. However, NH3 gas highly reduces formation of CN radical, thereby decreasing C content of Ti(C, N) thin films in a great deal. Compared to PVD TiN films, the Ti(C, N) film grown by PEMOCVD has very good conformability; the step coverage exceeds 85% with an aspect ratio of more than 3.

  • PDF

Development of Thin-Film Type Strain Gauges for High-Temperature Applications (고온용 박막형 스트레인 게이지 개발)

  • Choi, Sung-Kyu;Chung, Gwiy-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1596-1598
    • /
    • 2002
  • This paper presents the characteristics of Ta-N thin-film strain gauges as high-temperature strain gauges, which were deposited on Si substrate by DC reactive magnetron sputtering in an argon-nitrogen atmosphere(Ar-($4{\sim}16%$)$N_2$). These films were annealed for 1 hour in $2{\times}10^{-6}$ Torr vacuum furnace range $500{\sim}1000^{\circ}C$. The optimized conditions of Ta-N thin-film strain gauges were annealing condition($900^{\circ}C$, 1 hr.) in 8% $N_2$ gas flow ratio deposition atmosphere. Under optimum conditions, the Ta-N thin-films for strain gauges is obtained a high resistivity, ${\rho}$=768.93 ${\mu}{\Omega}cm$, a low temperature coefficient of resistance, TCR = -84 ppm/$^{\circ}C$ and a high temporal stability with a good longitudinal gauge factor, GF = 4.12.

  • PDF

Effects of nitrogen doping on mechanical and tribological properties of thick tetrahedral amorphous carbon (ta-C) coatings (질소 첨가된 ta-C 후막코팅의 기계 및 트라이볼로지적 특성연구)

  • Gang, Yong-Jin;Jang, Yeong-Jun;Kim, Jong-Guk
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.156-156
    • /
    • 2016
  • The effect of nitrogen doping on the mechanical and tribological performance of single-layer tetrahedral amorphous carbon (ta-C:N) coatings of up to $1{\mu}m$ in thickness was investigated using a custom-made filtered cathode vacuum arc (FCVA). The results obtained revealed that the hardness of the coatings decreased from $65{\pm}4.8GPa$ to $25{\pm}2.4GPa$ with increasing nitrogen gas ratio, which indicates that nitrogen doping occurs through substitution in the $sp^2$ phase. Subsequent AES analysis showed that the N/C ratio in the ta-C:N thick-film coatings ranged from 0.03 to 0.29 and increased with the nitrogen flow rate. Variation in the G-peak positions and I(D)/I(G) ratio exhibit a similar trend. It is concluded from these results that micron-thick ta-C:N films have the potential to be used in a wide range of functional coating applications in electronics. To achieve highly conductive and wear-resistant coatings in system components, the friction and wear performances of the coating were investigated. The tribological behavior of the coating was investigated by sliding an SUJ2 ball over the coating in a ball-on-disk tribo-meter. The experimental results revealed that doping using a high nitrogen gas flow rate improved the wear resistance of the coating, while a low flow rate of 0-10 sccm increased the coefficient of friction (CoF) and wear rate through the generation of hematite (${\alpha}-Fe_2O_3$) phases by tribo-chemical reaction. However, the CoF and wear rate dramatically decreased when the nitrogen flow rate was increased to 30-40 sccm, due to the nitrogen inducing phase transformation that produced a graphite-like structure in the coating. The widths of the wear track and wear scar were also observed to decrease with increasing nitrogen flow rate. Moreover, the G-peaks of the wear scar around the SUJ2 ball on the worn surface increased with increasing nitrogen doping.

  • PDF

The Characteristics of Microbial Population Community Structure by an Addition of External Carbon Source in BNR Process for Low C/N Ratio Sewage Treatment (낮은 C/N비 하수의 외부 탄소원 주입에 따른 생물학적 질소제거에서 미생물 군집 구조특성)

  • Yoon, Cho-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.8
    • /
    • pp.831-838
    • /
    • 2008
  • This study investigated the characteristics of nitrogen removal and microbial community in a lab-scale A$_2$O activated sludge process filled with the fluidized media at an aerebic basin. The change of microbial community was monitored based on quinone profiles of activated sludge according to feeding sewage with/without external carbon source. Low C/N ratio(COD$_{Cr}$/T-N of 1.24) sewage was fed. The obtained results from this study were as follows; Ubiquinone(UQ) in the influent was in the descending order of UQ-8, UQ-10 and UQ-9. Menaquinone(MK) was simpler and much less than UQ. The ratio of UQ/MK was less than 0.41 and the dissimilarity was below 0.26. Without an external carbon source, MK-8 was the dominant species and there were 3 kinds of quinone species and low DQ and EQ values in an anaerobic basin. The ratio of UQ/MK increased to 2.3 in an anoxic basin. In an oxic basin, UQ-7 and UQ-8 were the dominant species. UQ-7 was dominating in suspended microorganisms, while UQ-8 was in attached microorganisms. With an external carbon source addition, MK-8 decreased but UQ-8 increased in an anaerobic basin. So did quinone species, DQ and EQ values. There was also a change in an anoxic basin with the improvement of denitrification. UQ-8 decreased instead, MK-7 and MK-8 increased. UQ/MK ratio decreased 2.3 to 1.4. It means that the dominant species change from Pseudomonas sp. to Bacillus and Micrococcus species. etc. In an oxic basin, UQ-8 replaced UQ-7 in suspended microorganisms and UQ-10 replaced UQ-8 in attached microbials. This seemed related with the growth of Nitrosomonas and Nitrobactor species.

CMOS on-chip voltage and current reference circuits for low-voltage applications (저전압용 CMOS 온-칩 기준 전압 및 전류 회로)

  • 김민정;이승훈
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.4
    • /
    • pp.1-15
    • /
    • 1997
  • This paper proposes CMOS on-chip voltage and current reference circuits that operate at supply voltages between 2.5V and 5.5V without using a vonventional bandgap voltage structure. The proposed reference circuits based on enhancement-type MOS transistors show low cost, compatibility with other on-chip MOS circuits, low-power consumption, and small-chip size. The prototype was implemented in a 0.6 um n-well single-poly double-metal CMOS process and occupies an active die area of $710 um \times 190 um$. The proposed voltage reference realizes a mean value of 0.97 V with a standard deviation of $\pm0.39 mV$, and a temperature coefficient of $8.2 ppm/^{\circ}C$ over an extended temeprature range from TEX>$-25^{\circ}C$ to $75^{\circ}C$. A measured PSRR (power supply rejection ratio) is about -67 dB at 50kHz.

  • PDF

Effects of Type of Oilseed and Level of Concentrate on Fermentation, Biohydrogenation of Fatty Acids and Conjugated Linoleic Acid Production in a Rumen-Simulated Continuous Culture System (지방급원 형태와 수준에 따른 연속배양장치 내 반추위 발효성상, 지방산의 수소첨가 현상 및 Conjugated Linoleic Acid 생산에 미치는 영향 연구)

  • Choi, N.J.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.617-626
    • /
    • 2003
  • This experiment employed a rumen simulated continuous culture system to examine the possibility of improving the rumen bypass of polyunsaturated fatty acids (PUFA) by using a high proportion of concentrate in the feed, and compared soya and linseed in terms of conjugated linoleic acid (CLA) production. No effect of type of fat source was observed on ruminal fermentation. A high proportion of concentrate (80%) in the feed decreased (P<0.001) vessel pH but increased (P<0.01) ammonia nitrogen, total VFA, acetate, butyrate and valerate concentrations compared with a low proportion (40%). Fat sources (soya vs. linseed) and concentrate ratio in the feed did not affect digestibilities of organic matter (OM), total nitrogen, neutral detergent fiber (NDF) and acid detergent fiber (ADF). Soya increased the flows of trans C18:1, C18:2 n-6 and C18:3 n-3 compared with linseed. The difference in fat source alone did not affect the flow of CLA but this was increased when high levels of soya and linseed were associated with a high proportion of concentrate in the feed. There was no effect of fat source on biohydrogenation of C18:1 n-9 and C18:2 n-6, but biohydrogenation of C18:3 n-3 and total C18 PUFA was higher with the linseed than with the soya treatment. A high proportion of concentrate decreased biohydrogenation of C18:2 n-6, C18:3 n-3 and total C18 PUFA compared with a low proportion.