• 제목/요약/키워드: Low Alloy

검색결과 1,524건 처리시간 0.03초

저사이클피로 하중하의 Alloy 617 모재와 용접부재에 대한 피로 수명 평가 (Evaluation of Fatigue Life on Alloy 617 Base Metal and Alloy 617/Alloy 617 Weld Joints under Low Cycle Fatigue Loading)

  • ;김선진;김우곤;김민환
    • 동력기계공학회지
    • /
    • 제18권5호
    • /
    • pp.122-128
    • /
    • 2014
  • Generally, the mechanical components and structures are joined by many welding techniques, and therefore the welded joints are inevitable in the construction of structures. The Alloy 617 was initially developed for high temperature applications above $800^{\circ}C$. It is often considered for use in aircraft and gas turbines, chemical manufacturing components, and power generation structures. Especially, the Alloy 617 is the primary candidate for construction of intermediate heat exchanger (IHX) on a very high temperature reactor (VHTR) system. In the present paper, the low cycle fatigue (LCF) life of Alloy 617 base metal (BM) and the gas tungsten arc welded (GTAWed) weld joints (WJ) are evaluated by using the previous experimental results under strain controlled LCF tests. The LCF tests have been performed at room temperature with total strain ranges of 0.6, 0.9, 1.2 and 1.5%. The LCF lives for the BM and WJ have been evaluated from the Coffin-Manson and strain energy based life methods. For both the BM and WJ, the LCF lives predicted by both Coffin-Manson and strain energy based life methods was found to well coincide with the experimental data.

850℃에서의 Alloy 617 용접재의 저사이클 피로 특성 (Low Cycle Fatigue Behavior of Alloy617 Weldment at 850℃)

  • 황정준;김선진;김우곤;김응선
    • 대한기계학회논문집A
    • /
    • 제41권3호
    • /
    • pp.193-198
    • /
    • 2017
  • Alloy 617은 초고온가스로(VHTR)의 중간열교환기(IHX)의 유력한 후보 재료 중의 하나이다. $850^{\circ}C$의 고온에서 Alloy 617 용접재의 저사이클 피로 거동을 고찰하기 위하여, 완전 양진 변형률제어 피로시험이 0.6에서 1.5%의 전변형률범위에서 수행되었다. 용접재 시험편은 V-그루브 형상의 가스텅그스텐아크 용접한 용접 패드로부터 가공되었다. 피로수명은 전변형률범위가 증가할수록 감소하였다. 모든 실험조건에서 Alloy 617 용접재 시험편의 반복 응력 반응 거동은 초기 수 사이클에서 반복 변형률 경화현상을 나타내었다. 또한 모든 피로 균열의 발생과 전파는 입내파괴의 파손 모드를 보였다.

철의 고온 황화부식에 미치는 탄소의 영향 (The Effect of Carbon on the Hot Corrosion of lron by Sulfur Containing Environment.)

  • 최성필;강성군;백영남
    • 한국표면공학회지
    • /
    • 제21권2호
    • /
    • pp.53-67
    • /
    • 1988
  • The high temperature corrosion of Fe-C alloys were studied at I atm SO gas in the temperature range 500~80$0^{\circ}C$ by means of a thermogravimetric analysis. The Na2SO4 induced high tempwrature corrosion rate was also measured at atm O2 gas under above the temperature renge. The reaction products were identified with the aid of X-ray diffraction technique, and micostruction of the alloy/scale interface was observed with a optical microscope and SEM. The experimental results were disussed by the themodeynamic calcutions. Under above the experimental condition. the reaction rates decrbon with increasing carbon content. The transfer of Fe ion was limited by a residue of carbon precipitated at alloy scale interface due to the oxidation of Fe-C alloys at alloy surface. The effect of cold working on reaction rate was different between the Fe containing low carbon and Fe-C Alloy containing carbon above 0,73 wt%. In a cold worked iron containing low carbon content, the crystallization of metal surface leads to the poor adherence between the alloy and the cavity formed between the alloy and scale. The outward diffusion of ion through the scale is estimated to be hindered by the cavity formed between the scale, consequently decreasing reaction rate. In the case Fe-C containing carbon above 0.73 Wt% alloy, the reaction rate was little affected by cold working, because the effect of content on reaction rats is greater than the effect of cold working.

  • PDF

Effects of Sulfuric Acid Concentration and Alloying Elements on the Corrosion Resistance of Cu-bearing low Alloy Steels

  • Kim, Ki Tae;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • 제17권4호
    • /
    • pp.154-165
    • /
    • 2018
  • During the process of sulfur dioxide removal, flue gas desulfurization equipment provides a serious internal corrosion environment in creating sulfuric acid dew point corrosion. Therefore, the utilities must use the excellent corrosion resistance of steel desulfurization facilities in the atmosphere. Until now, the trend in developing anti-sulfuric acid steels was essentially the addition of Cu, in order to improve the corrosion resistance. The experimental alloy used in this study is Fe-0.03C-1.0Mn-0.3Si-0.15Ni-0.31Cu alloys to which Ru, Zn and Ta were added. In order to investigate the effect of $H_2SO_4$ concentration and the alloying elements, chemical and electrochemical corrosion tests were performed. In a low concentration of $H_2SO_4$ solution, the major factor affecting the corrosion rate of low alloy steels was the exchange current density for $H^+/H_2$ reaction, while in a high concentration of $H_2SO_4$ solution, the major factors were the thin and dense passive film and resulting passivation behavior. The alloying elements reducing the exchange current density in low concentration of $H_2SO_4$, and the alloying elements decreasing the passive current density in high concentration of $H_2SO_4$, together play an important role in determining the corrosion rate of Cu-bearing low alloy steels in a wide range of $H_2SO_4$ solution.

미세 결정립 Ti-6Al-2Sn-4Zr-2Mo-0.1Si 합금의 저온 초소성 변형 거동 (Low-Temperature Superplastic Deformation Behavior of Fine-Grained Ti-6Al-2Sn-4Zr-2Mo-0.1Si Alloy)

  • 박찬희;이병갑;이종수
    • 소성∙가공
    • /
    • 제18권7호
    • /
    • pp.544-549
    • /
    • 2009
  • This study aimed to elucidate the deformation mechanism during low-temperature superplasticity of fine-grained Ti-6Al-2Sn-4Zr-2Mo-0.1Si alloy in the context of constitutive equation. For this purpose, initial coarse equiaxed microstructure was refined to $2.2{\mu}m$ via dynamic globularization. Globularized microstructure exhibited large superplastic elongations(434-826%) at temperatures of $650-750^{\circ}C$ and strain rate of $10^{-4}s^{-1}$. It was found that the main deformation mechanism of fine-grained material was grain boundary sliding accommodated by dislocation motion with both stress exponent (n) and grain size exponent (p) values of 2. When the alpha grain size, not sub-grain size, was considered to be an effective grain size, the apparent activation energy for low-temperature superplasticity of the present alloy(169kJ/mol) was closed to that of Ti-6Al-4V alloy(160kJ/mol).

분무성형을 통한 과공정 Aㅣ-Si 합금 제조 및 기계적 특성 (Fabrication of Hypereutectic Spray-formed Al-Si Alloy and Its Deformation Behavior)

  • 하태권;김요섭;박우진;이언식;안상호;장영원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.20-23
    • /
    • 2001
  • Hypereutectic Al-25Si alloy, which is expected to be applied to the cylinder-liner-part of the engine-block of an automobile due to its excellent wear resistance, low density and low thermal expansion coefficient, has been fabricated through a spray forming process. The obtained microstructure of the hypereutectic Al-25Si alloy appeared to consist of Al matrix and equiaxed Si particles of average diameter of 5-7 mm. To characterize the deformation behavior of this alloy, a series of load relaxation and compression tests have been conducted at temperatures ranging from RT to $500^{\circ}C$. The strain rate sensitivity parameter (m) of this alloy has been found to be very low (0.1) below $400^{\circ}C$ and reached maximum value of about 0.2 at $500^{\circ}C$. During the deformation above $300^{\circ}C$ in compression, strain softening has been observed. The diagram of extrusion pressure vs. ram-speed has been constructed. The extrusion has been successfully conducted at the temperatures of $300^{\circ}C$ and above with the ratio of area reduction of 28 and 40 in this study.

  • PDF

개량형 인바합금의 미세조직에 미치는 열처리 및 Ti 첨가 영향 (Effects of Heat Treatment and Ti addition on Microstructures in Modified Invar Alloys)

  • 허민선;이정한;이찬규;이재현
    • 열처리공학회지
    • /
    • 제13권6호
    • /
    • pp.412-419
    • /
    • 2000
  • There has been a considerable attention on Invar alloys due to its low thermal expansion property. A low thermal expansion property of Invar alloys, lower than $10^{-6}$ near the room temperature, is attractive for electric transmission lines and precision machine tools. However, the expansion property of Invar alloys is limited below about 520K, and mechanical properties are relatively low to apply to electric transmission line. In order to improve mechanical properties in this alloy, Ti alloying element was added to the $Ni_{38}-Mo_2-Cr_1-Fe$ invar alloy. The microstructure Ti added alloy showed finer than that of the unalloyed one. It was found that the (Mo, Ti), Mo carbide formed by Ti addition obstacled grain growth by pinning effect and supplyed recrystallization sites during heat-treatment. Optimum heat-treatment conditions with Ti addition were also discussed in the modified Invar alloy.

  • PDF

5052 Al 합금의 소성가공 및 열처리에 따른 피로거동 및 serration의 변화 (Low Cycle Fatigue and Serration Behavior of Plastically Deformed and Annealed 5052 Al Alloy)

  • 차주호;권숙인
    • 열처리공학회지
    • /
    • 제23권3호
    • /
    • pp.131-136
    • /
    • 2010
  • The LCF (low cycle fatigue) behavior and the serration phenomena in the plastically deformed and non-deformed 5052 Al alloy were investigated. The plastic deformation was performed by 1 pass or 4 passes in ECAP (equal channel angular pressing) followed by annealing. Only cyclic hardening continued from the beginning until fracture at all strain amplitudes during LCF in the non-deformed alloy, which was caused by the increase in dislocation density during fatigue. Slight cyclic hardening followed by plateau until fracture was observed during LCF in the ECAPed alloy, which was caused by the slight increase in dislocation density in the beginning and then keeping constant in dislocation density afterward until fracture by forming subgrains in this stage of fatigue. The serrations on the stress-strain curves of this alloy were observed, which indicate that the dynamic strain aging (DSA) is occurring during plastic deformation. The variation in amplitudes of serration was studied by changing the strain rate in tensile or fatigue tests.

Al계 초소성합금과 Zr계 비정질합금의 마이크로 진동성형에 관한 연구 (A Study on the Micro Vibration Forming of Al-based Superplastic Alloy and Zr-based Bulk Metallic Glass)

  • 손선천;박규열;나영상
    • 한국공작기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.193-200
    • /
    • 2007
  • Micro forming is a suited technology to manufacture very small metallic parts(several $mm{\sim}{\mu}m$). Al5083 superplastic alloy with very small grains has a great advantage in achieving micro deformation under low stress due to its relatively low strength at a specific high temperature range. Micro forming of $Zr_{62}Cu_{17}Ni_{13}Al_8$ bulk Metallic glass(BMG) as a candidate material for this developing process are feasible at a relatively low stress in the supercooled liquid state without any crystallization during hot deformation. In this study, the micro formability of Al5083 superplastic alloy and bulk metallic glass, $Zr_{62}Cu_{17}Ni_{13}Al_8$, was investigated with the specially designed micro vibration forming system using pyramid-shape, V-shape and U-shape micro die pattern. With these dies, micro vibration forming was conducted by varying the applied load, time. Micro formability was estimated by comparing the hight of formed shape using non-contact surface profiler system. The vibration load effect to metal flow in the micro die and improve the micro formability of Al5083 superplastic alloy and $Zr_{62}Cu_{17}Ni_{13}Al_8$ bulk Metallic glass(BMG).

듀플렉스 알루미늄 합금의 내식성 분석 (Corrosion analysis of the duplex aluminum alloys)

  • 최인규;김시명;김상호
    • 한국표면공학회지
    • /
    • 제48권5호
    • /
    • pp.227-232
    • /
    • 2015
  • Corrosion characteristic of the duplex Al-Mg-Si alloys with low, commercial and high solute contents were studied using an anodic polarization test in 1M NaCl solution at room temperature. Polarization range condition of the experiment were form .0.3V to .1.3V with a 0.2 mV scanning speed. The exchange current density means corrosion rate of the low solute alloy was low as about $16.29{\mu}A/cm^2$, and that of the high solute alloy was high as $84.92{\mu}A/cm^2$. The difference was mainly attributed to the inter-granular precipitates $Mg_2Si$ and Si which could make a galvanic corrosion on the aluminum base. The amount of precipitates was greater in high solute alloy at mainly in grain boundary. While, the extruded alloys had better corrosion resistance than the cast alloy because the silicon precipitates become coarse during the extrusion process.