• Title/Summary/Keyword: Low Alloy

Search Result 1,524, Processing Time 0.031 seconds

A STUDY ON THE FLEXURAL BOND STRENGTH OF THE GOLD AND THE Co-Cr ALLOY TO THE DENTURE BASE RESINS (금 합금 및 비 귀금속 합금에 대한 의치상 레진의 결합강도에 관한 연구)

  • Park, Hyun-Joo;Kim, Chang-Whe;Kim, Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.4
    • /
    • pp.500-509
    • /
    • 2000
  • In general, the three major oral functions of edentulous patients-mastication, phonation, esthetics-can be rehabilitated by the complete dentures, and both the resin based complete denture and the metal based complete denture are commonly used by many clinicians today. For the sake of many advantages such as the excellent thermal conductivity, low volumetric change, high strength, low risk of fracture and the better patient's adaptation, the metal based complete dentures are indicated to the several cases. But, there are common failures of these type of dentures mainly by the fracture or the debonding between the resin structures and the metal frameworks which is caused by the discrepancies of the flexural strength and the coefficient of thermal expansion. This is aggravated by the water contamination of the interface when exposed to the oral environment and results in the failure of complete denture treatment. So, the purpose of this study is to compare the bond strength and the fracture patterns of the gold alloy based and the Co-Cr alloy based complete dentures using the PMMA resins and the 4-META adhesive resins. The results of this study were as follows. 1. Both to the PMMA resin and the 4-META resin, the flexural bond strength of gold alloy is lower than that of Co-Cr alloy(P<0.05) 2. To the Co-Cr alloy, the bond strength of the 4-META resin is significantly higher than that of PMMA resin(P<0.05). 3. The flexural strength of the group with the mechanical retention form is significantly higher than that of the group without retention form(P<0.05). 4. Comparing with the other groups, the fracture patterns of the group 3 are quite different from the group 1,2,5.

  • PDF

Effect of Fe, Mn Content on the Castability of Al-4%Mg-0.9%Si Alloys for High Pressure Die Casting (고압 금형 주조용 Al-4%Mg-0.9%Si 합금의 주조특성에 미치는 Fe, Mn 함량의 영향)

  • Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.33 no.2
    • /
    • pp.55-62
    • /
    • 2013
  • Effect of Fe and Mn contents on the castability of Al-4wt%Mg-0.9wt%Si system alloy has been studied. According to the analysis of cooling curve for Al-4wt%Mg-0.9wt%Si-0.3wt%Fe-0.3/0.5wt%Mn alloy, ${\alpha}-Al_{15}(Fe,Mn)_3Si_2$ and ${\beta}-Al_5FeSi$ phases crystallized above eutectic temperature of $Mg_2Si$. Therefore, these phases affected both the fluidity and shrinkage behaviors of the alloy during solidification. As Fe and Mn contents of Al-4wt%Mg-0.9wt%Si system alloy increased from 0.1 wt% to 0.4 wt% and from 0.3 wt% to 0.5 wt% respectively, the fluidity of the alloy decreased by 26% and 33%. When Fe content of the alloy increased from 0.1 wt% to 0.4 wt%, 23% decrease of macro shrinkage and 19% increase of micro shrinkage appeared. Similarly, Mn content of the alloy increased from 0.3 wt% to 0.5 wt%, 11% decrease of macro shrinkage and 14% increase of micro shrinkage appeared. Judging from the castability of the alloy, Al-4wt%Mg-0.9wt%Si alloy with low content of Fe and Mn, 0.1 wt% Fe and 0.3 wt% Mn, is recommendable.

Characteristics of Surface Grinding for Heat Treated Titanium Alloy (열처리된 티타늄 합금의 연삭가공 특성)

  • Heo, S.;Kim, W.I.;Wang, D.H.;Lee, Y.K.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.349-354
    • /
    • 2000
  • A use of Titanium alloy as a structural material is increasing lately. Among those titanium alloys, Ti-6A1-4V alloy is the most popular one with taking 2/3 of it's market. Also, Ti-6A1-4V alloy can get the stability of organization and product measure, and the evaluation of the cutting ability and the mechanical characteristics. The point in titanium alloy work is on how treat the heat generated during grinding. Because the heat conductivity of titanium alloy is unnegligibly low, the grinding heat is accumulated in workpiece, and it cause the increasing of grinding grits' wear and the rough grinding surface. So, these characteristics in grinding of titanium alloy will change the mechanical characteristics of the titanium alloy. From this study, the mechanical characteristics of annealed Ti-6A1-4V alloy after grinding was concerned with checking out the bending strength values, and the factor of the change and the difference was analyzed after analyzing the surface roughness and the image from SEM.

  • PDF

Corrosion Behavior of a High-Manganese Austenitic Alloy in Pure Zinc Bath

  • Yi, Zhang;Liu, Junyou;Wu, Chunjing
    • Corrosion Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.98-103
    • /
    • 2010
  • In order to further reduce the cost without reducing the corrosion resistance, a high-manganese austenitic alloy for sink roll or stabilizer roll in continuous hot-dip coating lines was developed. A systematic study of corrosion behavior of the high-manganese austenitic alloy in pure zinc bath at $490^{\circ}C$ was carried out. The results shows that, the high-manganese austenitic alloy shows better corrosion resistance than 316L steel. The corrosion rate of the high-manganese austenitic alloy in pure zinc bath is calculated to be approximately $6.42{\times}10^{-4}g{\cdot}cm^{-2}{\cdot}h^{-1}$, while the 316L is $1.54{\times}10^{-3}g{\cdot}cm^{-2}{\cdot}h^{-1}$. The high-manganese austenitic alloy forms a three-phase intermetallic compound layer morphology containing ${\Gamma$}, ${\delta}$ and ${\zeta}$ phases, while the 316L is almost ${\zeta}$ phase. The ${\Gamma}$ and ${\delta}$ phases of the high-manganese austenitic alloy contain about 8.5 wt% Cr, the existence of Cr improve the stabilization of phases, which slow down the reaction of Fe and Zn, improve the corrosion resistance of the high-manganese austenitic alloy. So substitute the nickel with the manganese to manufacture the high-manganese austenitic alloy of low cost is feasible.

Effects of Film Formation Conditions on the Chemical Composition and the Semiconducting Properties of the Passive Film on Alloy 690

  • Jang, HeeJin;Kwon, HyukSang
    • Corrosion Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.141-148
    • /
    • 2006
  • The chemical composition and the semiconducting properties of the passive films formed on Alloy 690 in various film formation conditions were investigated by XPS, photocurrent measurement, and Mott-Schottky analysis. The XPS and photocurrent spectra showed that the passive films formed on Alloy 690 in pH 8.5 buffer solution at ambient temperature, in air at $400^{\circ}C$, and in PWR condition comprise $Cr_2O_3$, $Cr(OH)_3$, ${\gamma}-Fe_2O_3$, NiO, and $Ni(OH)_2$. The thermally grown oxide in air and the passive film formed at high potential (0.3 $V_{SCE}$) in pH 8.5 buffer solution were highly Cr-enriched, whereas the films formed in PWR condition and that formed at low potential (-0.3 $V_{SCE}$) in pH 8.5 buffer solution showed relatively high Ni content and low Cr content. The Mott-Schottky plots exhibited n-type semiconductivity, inferring that the semiconducting properties of the passive films formed on Alloy 690 in various film formation conditions are dominated by Cr-substituted ${\gamma}-Fe_2O_3$. The donor density, i.e., concentration of oxygen vacancy, was measured to be $1.2{\times}10^{21}{\sim}4.6{\times}10^{21}cm^{-3}$ and lowered with increase in the Cr content in the passive film.

Effect of Microporosity on High Cycle Fatigue Property of A356 Alloy (A356 합금의 고주기 피로특성에 미치는 미소기공율의 영향)

  • Yoo, Suk-Jong;Lee, Choong-Do
    • Journal of Korea Foundry Society
    • /
    • v.31 no.4
    • /
    • pp.198-204
    • /
    • 2011
  • The present study was aimed to investigate the dependence of fatigue property on microporosity variation of low-pressure die-cast (LPDC) A356 alloy. The fatigue property of A356 alloy was evaluated through high cycle fatigue test, and the microporosity-terms used were the fractographic porosity measured from SEM observation on fractured surface and the volumetric porosity obtained through the density measurement using Archimedes's principle. The number of cycles to failure of A356 alloys depends obviously upon the variation of fractographic porosity, and can describe in terms of the defect susceptibility which depends on the microporosity variation at a given value of stress amplitude. The modified Basquin's equation was suggested through the combination of microporosity variation and static maximum tensile stress to fatigue strength coefficient. Using modified Basquin's equation, it could suggest that the maximum values of fatigue strength coefficient and exponent achievable in defect-free condition of A356 alloy are 265 MPa, -0.07, respectively.

Electrical Properties of Plate Typed Shunt Resistors with Low TCR Property (낮은 TCR 특성을 가지는 플레이트 션트저항의 전기적 특성)

  • Lim, Youngtaek;Kim, Eun-Min;Lee, Sang-Won;Ahn, Jeong-Rae;Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.3
    • /
    • pp.219-222
    • /
    • 2019
  • In this study, we fabricated plate-type shunt resistors with thermal stability by parallelly connecting metal alloy plates with positive temperature coefficient of resistance (TCR) and carbon nanotube (CNT) plates with negative TCR. The metal alloy plates, which were prepared by alloying Cu and Mn with a composition of 91 wt% of Cu and 9 wt% of Mn, showed around $800ppm/^{\circ}C$ of TCR, and the CNT plates prepared from the CNT solution by using the vacuum filtration method showed around $-800ppm/^{\circ}C$ of TCR. The shunt resistor that was fabricated by stacking metal alloy plates and CNT plates in this work showed about $46.93ppm/^{\circ}C$ of TCR. Therefore, we conclude that a shunt resistor with low TCR can be realized by simply adjusting the TCR of the metal alloy only, because the TCR of the CNT plate has an identical value.

Effect of Alloying Element Addition on the Microstructure, Tensile and Impact Toughness of the Modified Al-6.5Si Alloy (개량 Al-6.5Si 합금의 미세조직, 인장 및 충격 인성에 미치는 합금 원소 첨가의 영향)

  • Park, T.H.;Baek, M.S.;Yoon, S.I.;Kim, J.P.;Lee, K.A.
    • Transactions of Materials Processing
    • /
    • v.29 no.3
    • /
    • pp.135-143
    • /
    • 2020
  • Low-cost alloying elements were added to a modified Al-6.5Si alloy and its microstructure, tensile and impact toughness properties were investigated. The alloying elements added were Mg, Zn, and Cu, and two kinds of alloy A (Mg:0.5, Zn:1, Cu:1.5 wt.%) and alloy B (Mg:2, Zn:1.5, Cu:2 wt.%) were prepared. In the as-cast Al-6.5Si alloys, Si phases were distributed at the dendrite interfaces, and Al2Cu, Mg2Si, Al6 (Fe,Mn) and Al5 (Fe,Mn)Si precipitates were also observed. The size and fraction of casting defects were measured to be higher for alloy A than for alloy B. The secondary dendrite arm spacing of alloy B was finer than that of alloy A. It was confirmed by the JMatPro S/W that the cooling rate of alloy B could be more rapid than alloy A. The alloy B had higher hardness and strength compared to the values of alloy A. However, the alloy A showed better impact toughness than alloy B. Based on the above results, the deformation mechanism of Al-6.5Si alloy and the improving method for mechanical properties were also discussed.

Manufacturing Technology of Titanium Alloy Bolts Using Warm Forging Process (온간 단조공정을 이용한 타이타늄합금 볼트 제조기술)

  • Lim, S.G.;Kim, J.H.;Kim, J.H.;Lee, C.H.;Bong, J.K.;Yeom, J.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.80-81
    • /
    • 2009
  • Ti-6Al-4V alloy has been widely used for aerospace and power generation applications because of low density and attractive mechanical and corrosion resistant properties. However, the titanium alloy bolt is generally manufactured by cutting and rolling because of their poor workability. In order to achieve the mass production of titanium alloy bolts, it needs to be solved some manufacturing problems such as the sticking between workpiece and dies, the formation of the forming defects during the forging and so on. In this study, the manufacturing technology of titanium alloy bolts using warm forging process was introduced. The aim of present work is to develop a warm forging technology for high strength Ti-6Al-4V bolts.

  • PDF

The Effect of Heat Treatment Hold Time for Mechanical Properties of Zinc-Magnesium Alloy (아연-마그네슘 합금의 열처리에 따른 기계적 특성 연구)

  • Hwang, Injoo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.3
    • /
    • pp.117-123
    • /
    • 2020
  • Due to high corrosion resistance, Zinc has been widely used in the automobile, shipping or construction industries as a galvanizing material. Zinc is popular as a coating element, but its low mechanical strength impede the expansion of applications as a load-bearing structure. The mechanical strength of Zinc can be increased through zinc based alloy process, but the ductility is significantly reduced. In this study, the mechanical strength and ductility of Zinc-Magnesium alloys with respect to heat treatment hold time was investigated. In order to enhance the mechanical strength of Zinc, a Zinc-Magnesium alloy was fabricated by a melting process. The heat treatment process was performed to improve the ductility of Zinc-Magnesium alloy. The microstructure of the heat-treated alloy specimen was analyzed using SEM. The hardness and compressive strength of the specimen were measured by a micro-hardness tester and a nano-indenter, respectively.