• Title/Summary/Keyword: Low Alloy

Search Result 1,527, Processing Time 0.036 seconds

Effects of Silicone Contents and Flow Rates on the Formation and Mechanical Properties of Hard Anodized Film of Al-Si alloys (Al-Si 합금의 경질양극산화피막의 형성과 기계적 성질에 미치는 Si 함량과 전해액의 유속의 영향)

  • 김경택;안명규;이진형;권혁상
    • Journal of the Korean institute of surface engineering
    • /
    • v.24 no.4
    • /
    • pp.179-186
    • /
    • 1991
  • The effects of silicone contents and flow rates(agitation rates) of electrolyte on the formation and mechanical properties of hard anodized film of Al-Si alloy have been studied in 12% H2SO4 + 1% Oxalic acid with varying the silicone contents in the rance of 0 to 11.6% and the flow rates of electrolyte in the range of 0 to 90cm/sec. The film forming voltage required to maintain an equivalent current density significantly increase with the silicone content of Al-Si alloys due to a low conductivity of silicone. Hardness and wear resistance of the anodized film of Al-Si alloys decreases wit increasing the silicone content. The increase in the flow rate of electrolyte has a similar influence on the formation and mechanical properties of anodized film as does the decrease in bath temperature. Hardness of anodized film is rapidly increased with the flow rate being increased from 10cm/sec. It is observed that the increase in the flow rate from 11cm/sec. It is observed that the increase in the flow from 11cm/sec to 48cm/sec is more effective in enhancing the hardness of film than is the decrease in bath temperature from 1$0^{\circ}C$ to $0^{\circ}C$.

  • PDF

Investigation on Optimum Protection Potential Decision of Al Alloy(5083F) in Sea Water by Impressed Current Cathodic Protection (해수 환경하에서 알루미늄합금(5083F)의 외부전원법에 의한 최적 방식전위 결정에 관한 연구)

  • Kim, Seong-Jong;Kim, Jeong-Il;Kim, Jong-Shin
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.6
    • /
    • pp.262-270
    • /
    • 2007
  • Recently, there has been a new appreciation of aluminum alloys as materials that are capable of reducing the environment load. This is because aluminum alloys are lightweight, easy to recycle, permit miniaturization, and have environmental friendly properties. In this study, we investigated the mechanical and electrochemical properties of 5083F aluminum alloys using slow strain rate test(SSRT) and potentiostatic tests under various potential conditions. In the potentiostatic tests, the current density in the potential range from -0.7 to -1.4V after 1,200 s was low. After considering the results of the potentiostatic tests, maximum tensile strength, yield strength, elongation, time-to-fracture, observation of fractured specimen and fractography analysis, the optimum protection potential range was between -1.3 and -0.7V(Ag/AgCl).

A Study on Corrosion Resistance and Electrical Surface Conductivity of an Electrodeposited Ni-W Thin Film (전해도금에 의한 Ni-W 합금의 내식성 및 표면 전도도 특성 연구)

  • Park, Je-Sik;Jeong, Goo-Jin;Kim, Young-Jun;Kim, Ki-Jae;Lee, Churl-Kyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.2
    • /
    • pp.68-73
    • /
    • 2011
  • A Ni-W thin-film was synthesized by electrodeposition, and its corrosion resistance and electrical surface conductivity were investigated. Amount of tungsten in the Ni-W thin-film increased linearly with current density during the electrodeposition, and crack-free and low-crystalline Ni-21 at.%W coating layer was obtained. Corrosion resistances of the Ni-W thin-films were examined with an anodic polarization method and a storage test in a strong sulfuric acid solution. As a result, the Ni-21 at.%W thin-film exhibited the greatest corrosion resistance, and maintained the electrical surface conductivity even after the severe corrosion test, which could be applicable as a surface treatment for advanced metallic bipolar plates in fuel cell or redox flow battery systems.

Effects of Heat Input and Preheat/interpass Temperature on Strength and Impact Toughness of Multipass Welded Low Alloy Steel Weld Metal (다층용접한 저합금 용접금속의 강도와 인성에 미치는 입열량 및 예열/패스간 온도의 영향)

  • Bang, Kook-soo;Jung, Ho-shin;Park, Chan
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.481-487
    • /
    • 2015
  • The effects of the heat input and preheat/interpass temperatures on the tensile strength and impact toughness of multipass welded weld metal were investigated and interpreted in terms of the recovery of the alloying elements and microstructure. Increases in both the heat input and preheat/interpass temperatures decreased the tensile strength of the weld metal. A lower recovery of alloying elements, especially Mn and Si, and smaller area fraction of acicular ferrite in the weld metal were observed in higher heat input welding, resulting in a lower tensile strength. In contrast, only a microstructure difference was observed at a higher preheat/interpass temperature. The impact toughness of the weld metal gradually increased with an increase in the heat input because of the lower tensile strength. However, it decreased again when the heat input was larger than 45 kJ/cm because of the much smaller area fraction of acicular ferrite. No effect of the preheat/interpass temperature on the impact toughness was observed. The formation of a weld metal heat-affect zone showed little effect on the impact toughness of the weld metal in this experiment.

Eddy Current Sensor Development for Offshore Pipeline NDT Inspection (해양파이프라인 비파괴검사를 위한 와전류 센서 개발)

  • Lee, Seul-Gi;Song, Sung-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.199-206
    • /
    • 2015
  • Regular high-strength carbon steel is currently the most commonly used pipe material for onshore and offshore pipelines. The corrosion of offshore pipelines is a major problem as they age. The collapse of these structures as a result of corrosion may have a heavy cost is lives and assets. Therefore, their monitoring and screening is a high priority for maintenance, which may ensure the integrity and safety of a structure. Monitoring risers and subsea pipelines effectively can be accomplished using eddy current inspection to detect the average remaining wall thickness of corroded low-alloy carbon steel pipelines through corrosion scaling, paint, coating, and concrete. A test specimen for simulating the offshore pipeline is prepared as a standard specimen for an analysis and experiment with differential bobbin eddy current sensors. Using encircling coils, the signals for the defect in the simulated specimen are analyzed and evaluated in experiments. Differential bobbin eddy current sensors can diagnose the defects in a specimen, and experiments have been carried out using the developed bobbin eddy current sensor. As a result, the most optimum coil parameters were selected for designing differential bobbin eddy current sensors.

The effect of pre-treatment on superconducting property and deformation of Bi-2223/Ag tapes. (Bi-2223/Ag 고온초전도 선재의 전처리에 따른 가공성 및 초전도 특성)

  • Ha, Hong-Soo;Lee, Dong-Hoon;Choi, Jung-Kyu;Hwang, Sun-Yuk;Yang, Joo-Saeng;Kim, Sang-Chul;Ha, Dong-Woo;Oh, Sang-Soo;Kwon, Young-Kil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.25-29
    • /
    • 2003
  • Pre-treatment of Bi-2223/Ag tapes has been investigated to improve the superconducting property and grain alignment. However, rolling deformability of Bi-2223/Ag wires was degraded by the breakage of Ag alloy sheath after pre-treatment. Various pre-treatment conditions were tried to prevent the problem of sliver sheath and improve the superconducting property of Bi-2223/Ag tapes. Filament precursor of Bi-2223/Ag tapes was modified to be textured easily during main sintering by the optimum pre-treatment with low oxygen pressure and up to $800^{\circ}C$. Critical current was also increased up to 20% than that of no pre-treated tape.

  • PDF

The Influence of Shield Gas Ratio on the Toughness of Al5083-O GMA Welding Zone (Al5083-O GMA 용접시 불활성가스 혼합비가 용접부의 인성에 미치는 영향에 관한 연구)

  • 이동길;조상곤;김건호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.653-660
    • /
    • 2002
  • In this study, the toughness was evaluated by using the instrumented Charpy impact testing procedures for A15083-O aluminum alloy used in the LNG carrying and storing tank. The specimens were GMAW welded with four different mixing shield gas ratios (Ar100%+He0%, Ar67%+He33%, Ar50%+He50%, and Ar33%+He67%), and tested at four different temperatures(+25, -30, -85, and $-196^{\circ}C$) in order to investigate the influence of the mixing shield gas ratio and the low temperature. The specimens were divided into base metal, weld metal, fusion line, and HAZ specimen according to the worked notch position. From experiment, the maximum load increased a little up to -$85^{\circ}C$ , and the maximum load and maximum displacement were shown the highest and the lowest at -$196^{\circ}C$ than the other test temperatures. The absorption energy of weld metal notched specimens was not nearly depends on test temperature and mixing shield gas ratio because the casting structure was formed in weld metal zone. In the other hand, the other specimens were shown that the lower temperature, the higher absorption energy slightly up to $-85^{\circ}C$ but the energy was decreased so mush at $-196^{\circ}C$.

Empirical Relationship Between SP-curves and Tensile Properties in Mn-Mo-Ni Low Alloy Steels (Mn-Mo-Ni 저합금강의 SP-곡선과 인장물성과의 실험적 관계)

  • Lee, Jae-Bong;Kim, Min-Chul;Park, Jai-Hak;Lee, Bong-Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.554-562
    • /
    • 2004
  • An empirical relationship between parameters from SP curves and tensile properties has been systematically investigated by experimental tests and FEM simulations. A series of SP and tensile tests were performed. SP tests were also simulated by FE analysis with various tensile properties. It was found that the yield loads(Py) and the maximum loads( $P_{MAX}$) in SP curves were linearly related with the yield strength($\sigma$$_{o}$) and the tensile strength($\sigma$$_{UTS}$), respectively. The yield loads defined from the intersection point of two lines tangent to the elastic bending region and plastic bending region showed better relation to the yield strength than those from offset line. The maximum loads in SP curves showing plastic instability region was linearly related with the tensile strengths. The slope of SP curves in simulation results had a close correlation with the hardening coefficient and hardening strength as well.l.l.l.

Experimental Simulation of Iron Oxide Formation on Low Alloy Steel Evaporator Tubes for Power Plant in the Presence of Iron Ions

  • Choi, Mi-Hwa;Rhee, Choong-Kyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2577-2583
    • /
    • 2009
  • Presented are the formation of iron oxide layers on evaporator tubes in an actual fossil power plant operated under all volatile treatment (AVT) condition and an experimental simulation of iron oxide formation in the presence of ferrous and ferric ions. After actual operations for 12781 and 36326 hr in the power plant, two iron oxide layers of magnetite on the evaporator tubes were found: a continuous inner layer and a porous outer layer. The experimental simulation (i.e., artificial corrosion in the presence of ferrous and ferric ions at 100 ppm level for 100 hr) reveals that ferrous ions turn the continuous inner oxide layer on tube metal to cracks and pores, while ferric ions facilitate the production of porous outer oxide layer consisting of large crystallites. Based on a comparison of the oxide layers produced in the experimental simulation with those observed on the actually used tubes, we propose possible routes for oxid layer formation schematically. In addition, the limits of the proposed corrosion routes are discussed in detail.

Localized Corrosion of Pure Zr and Zircaloy-4

  • Yu, Youngran;Chang, Hyunyoung;Kim, Youngsik
    • Corrosion Science and Technology
    • /
    • v.2 no.6
    • /
    • pp.253-259
    • /
    • 2003
  • Zirconium based alloys have been extensively used as a cladding material for fuel rods in nuclear reactors, due to their low thermal neutron absorption cross-section, excellent corrosion resistance and good mechanical properties at high temperatures. However, a cladding material for fuel rods in nuclear reactors was contact water during long time at high-temperature, so it is necessary to improve the wear and corrosion resistance of the fuel cladding, At ambient environment, there are few data or paper on the characteristic of corrosion in chloride solution and acidic solution. The specimens used in this work are pure Zr and Zircaloy-4. Zircaloy-4 is a specific zirconium-based alloy containing, on a weight percent basis, 1.4% Sn, 0.2% Fe, 0.1% Cr. Pitting corrosion resistance of two alloys by ASTM G48 is higher than that of electrochemical method. Passive film formed on Zircaloy-4 is mainly composed of $ZrO_2$, metallic Sn, and iron species regardless of formation environments. Also, passive film formed on Zr alloys shows n-type semiconductic property on the base of Mott-Schottky plot.