• Title/Summary/Keyword: Loudspeaker' Array

Search Result 15, Processing Time 0.059 seconds

Sound Field Reconstruction Technology Using a Three Dimensional Loudspeaker Array (3차원 라우드스피커 어레이를 이용한 음장재현기술)

  • Seo, Jeong-Il;Kang, Kyeong-Ok;Fazi, Filippo M.;Nelson, Philip A.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.8
    • /
    • pp.723-731
    • /
    • 2009
  • In this paper, we propose a novel sound field reconstruction algorithm using a three dimensional loudspeaker array for providing realistic sound field to multiple listeners. The proposed algorithm is based on minimization of the squared error between the original sound field and the reconstructed sound field by the loudspeaker array over a predefined three dimensional region of the space using a loudspeaker array surrounding the listening area. For evaluating the proposed algorithm, we constructed the three dimensional array composed of 40 loudspeakers and discuss the relevant experiment results.

Subjective Listening Experiments on a Front and Rear Array-Based WFS System

  • Yoo, Jae-Hyoun;Seo, Jeong-Il;Shim, Hwan;Chung, Hyun-Joo;Sung, Koeng-Mo;Kang, Kyeong-Ok
    • ETRI Journal
    • /
    • v.33 no.6
    • /
    • pp.977-980
    • /
    • 2011
  • Wave field synthesis (WFS) has been gathering more and more attention recently due to its ability to perfectly reproduce an original sound field. However, to realize theoretically perfect WFS, a four-sided loudspeaker array that encloses the listener is required. However, it is difficult to build such a system except in large listening spaces, such as a theater or concert hall. In other words, if the listening space is a home, installing a side loudspeaker array is impractical. If the two side walls located to the left and right of the listener can be omitted, a setup using only front and rear loudspeaker arrays may be a solution. In this letter, we present a subjective listening experiment of sound localization/distance based on a WFS using a front and rear loudspeaker array system which is conducted on two listening points and shows average localization errors of $6.1^{\circ}$ and $9.18^{\circ}$, while the average distance errors are -27% (0.5 m) and -29% (0.6 m), respectively.

Personal Monitor & TV Audio System by Using Loudspeaker Array (스피커 배열을 이용한 개인용 모니터와 TV의 오디오 시스템)

  • Lee, Chan-Hui;Chang, Ji-Ho;Park, Jin-Young;Kim, Yang-Hann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.7
    • /
    • pp.701-710
    • /
    • 2008
  • Including a TV set and a monitor, personal audio system is raising a great interest. In this study, we applied a method to make a good bright zone around the user and dark zone to other region by maximizing the ratio of sound energy between the bright and dark zone. It has been well known as acoustic contrast control. We have attempted to use a line loudspeaker array system to localize the sound in our listening zone. It depends on the size of the zone and array parameters, for example, array size, loudspeaker unit spacing, wave length of sound. We have considered these parameters as spatial variables and studied the effects. And we have found that each spatial variable has its own characteristic and shows very different effect. Genetic algorithms are introduced to find out the optimum value of spatial variables. As a result, we can improve the result of the acoustic contrast control by optimum value of spatial variables.

Low-frequency Pattern Control Using Gradient Speaker Arrays (그레디언트 스피커 배열을 이용한 저주파 지향성 제어)

  • Choi, Chan-Gyu;Park, Cheon-Il;Rho, Jungkyu;Lee, Seon-Hee
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.4
    • /
    • pp.30-36
    • /
    • 2013
  • Recently the globalization of the media content industry, various activities have been made in the field of art and the speaker system is very important in the sound industry which is one of the arts. The directional characteristics of a loudspeaker refer to the radiation of sound in certain directions and are among the most important features of a loudspeaker. Designing a loudspeaker that can keep all of its constant directivity at all frequencies is difficult due to the wavelengths of audio frequencies and the size of horns and transducers. This study proposed gradient array methods to improve low frequency pattern control of full-range speakers to maximize Direct to Reverberant Ratios at the listeners.

Design of Multichannel Spherical Loudspeaker Array for the Spatial Sound Manipulation (소리의 공간 제어를 위한 구형 다채널 스피커 어레이 설계)

  • Kang, Dong-Soo;Choi, Jung-Woo;Lee, Jung-Min;Kim, Yang-Hann
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.4
    • /
    • pp.214-224
    • /
    • 2012
  • The objective of this paper is to design multichannel spherical loudspeaker array by considering various positioning methods such as Gaussian grid, Lebedev grid and packing method. For the spatial sound manipulation, which is to make desired sound field by controling multiple sound sources, the Kirchhoff- Helmholtz integral states that sound fields can be reproduced in terms of infinite control sources on the integral surface. But since we cannot control infinite number of sources for the implementation, we have to allocate finite number of sound sources which can approximately act as infinite number of sources. To manipulate sound field inside of a sphere (which is typical example of three dimensional array) by controlling sound sources on the surface, three methods of allocating sound sources, which are Gaussian grid, Lebedev grid and packing method, are reviewed. For each geometry, the performances of manipulation rendered by time-reversal operator and higher-order ambisonics are compared.

Subjective Listening Test based on Frontal Loudspeaker Array Reproduction System (전방 스피커 어레이 재생 방식 기반 음향 재현 성능 평가)

  • Yoo, Jae-hyoun;Jang, Daeyoung;Lee, Taejin
    • Journal of Broadcast Engineering
    • /
    • v.20 no.5
    • /
    • pp.667-675
    • /
    • 2015
  • As the interest on the high-definition and high-quality broadcasting is increased, the request on the high quality sound signal is enlarged as well as on the video signal's quality. One factor contributing to the high-quality of audio signal is an expansion of reproduction channels like 10.2channel and 22.2channel, but there is a problem of speaker installation issue of these many channels. One solution to solve this problem, we can use frontal loudspeaker array reproduction technique making virtual surround sound. So in this paper, we introduce theocratical analysis on the Wave Field Synthesis used for speaker array based sound reproduction and also present the result about the subjective listening test of reproduction performance based on this technique to check the perfoemance of this system. As a result, we showed WFS based frontal loudspeaker array reproduction method could provide sufficient performance compared to conventional discrete 5.1 channel reproduction method.

Microphone Array Design for Measurement of the Equivalent Source Height of Vehicle Noise (차량소음의 등가소음높이 측정을 위한 마이크로폰 배열 설계)

  • 윤종락;배민자
    • Journal of KSNVE
    • /
    • v.5 no.2
    • /
    • pp.197-206
    • /
    • 1995
  • Microphone array is designed to measure the equivalent source height of vehicle noise. The equivalent source position is defined for an arbirary distribution of acoustic sources above a perfectly reflecting plane and a microphone array for its measurement is developed. The normalized errors of the measured equivalent source heights are defined including the effects of background noise, the geometric near field, and source size. Normalized errors of the measured source heights obtained by a nemerical simulation for each parameter lead to optimization of the microphone spacing and to the design of an array which gives the equivalent source height as a function of frequency. The performance of the designed array is verified using the stationary loudspeaker experiments.

  • PDF

Fundamentals of Bright and Dark Zone: Theoretical Backgrounds (음향 대조 및 밝기 제어: 이론적 배경)

  • Choi, Jung-Woo;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.388-393
    • /
    • 2012
  • Acoustic brightness and contrast control are promising techniques for manipulating acoustic energy over selected zones of interest using loudspeaker arrays. In this paper, the fundamental theory and concept of the brightness and contrast control is reviewed. The similarity and difference of two different strategies are explained in terms of the constraint required to determine a unique solution among many possible candidates. The application examples and recent progresses of the brightness and contrast control are presented.

  • PDF