• 제목/요약/키워드: Loss-of-coolant accident

검색결과 210건 처리시간 0.023초

Mechanical analysis for prestressed concrete containment vessels under loss of coolant accident

  • Zhou, Zhen;Wu, Chang;Meng, Shao-ping;Wu, Jing
    • Computers and Concrete
    • /
    • 제14권2호
    • /
    • pp.127-143
    • /
    • 2014
  • LOCA (Loss Of Coolant Accident) is one of the most important utmost accidents for Prestressed Concrete Containment Vessel (PCCV) due to its coupled effect of high temperature and inner pressure. In this paper, heat conduction analysis is used to obtain the LOCA temperature distribution of PCCV. Then the elastic internal force of PCCV under LOCA temperature is analyzed by using both simplified theoretical method and FEM (finite element methods) method. Considering the coupled effect of LOCA temperature, a nonlinear elasto-plasitic analysis is conducted for PCCV under utmost internal pressure considering three failure criteria. Results show that the LOCA temperature distribution is strongly nonlinear along the shell thickness at the early time; the moment result of simplified analysis is well coincident with the one of numerical analysis at weak constraint area; while in the strong constrained area, the value of moments and membrane forces fluctuate dramatically; the simplified and numerical analysis both show that the maximum moment occurs at 6hrs after LOCA.; the strain of PCCV under LOCA temperature is larger than the one of no temperature under elasto-plastic analysis; the LOCA temperature of 6hrs has the greatest influence on the ultimate bearing capacity with 8.43% decrease for failure criteria 1 and 2.65% decrease for failure criteria 3.

가압열충격 사고에 대한 원자로 용기의 최대 허용 기준무연성천이온도 (Maximum Allowable $RT_{NDT}$ of Nuclear Reactor Vessel for Pressurized Thermal Shock Accident)

  • 정명조;박윤원;송선호
    • 전산구조공학
    • /
    • 제11권1호
    • /
    • pp.153-160
    • /
    • 1998
  • 본 연구에서는 가압열충격 사고로 소형 냉각재 상실사고를 가정하여 냉각재의 온도와 압력의 이력으로 부터 용기 벽의 온도분포를 구하고, 이로 부터 열응력과 압응력을 해석적으로 구하였다. 또 균열 선단에서의 응력강도계수와 파괴인성치를 ASME코드의 방법을 이용하여 구하였고, 이들을 시간에 따라 비교하여 균열의 진전여부를 평가하였다. 원자로 용기 벽에 존재하는 여러 형태의 균열이 견딜 수 있는 최대 기준무연성천이온도를 결정하였으며 평가 결과에 대하여 고찰하였다.

  • PDF

CSPACE for a simulation of core damage progression during severe accidents

  • Song, JinHo;Son, Dong-Gun;Bae, JunHo;Bae, Sung Won;Ha, KwangSoon;Chung, Bub-Dong;Choi, YuJung
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.3990-4002
    • /
    • 2021
  • CSPACE (Core meltdown, Safety and Performance Analysis CodE for nuclear power plants) for a simulation of severe accident progression in a Pressurized Water Reactor (PWR) is developed by coupling of verified system thermal hydraulic code of SPACE (Safety and Performance Analysis CodE for nuclear power plants) and core damage progression code of COMPASS (Core Meltdown Progression Accident Simulation Software). SPACE is responsible for the description of fluid state in nuclear system nodes, while COMPASS is responsible for the prediction of thermal and mechanical responses of core fuels and reactor vessel heat structures. New heat transfer models to each phase of the fluid, flow blockage, corium behavior in the lower head are added to COMPASS. Then, an interface module for the data transfer between two codes was developed to enable coupling. An implicit coupling scheme of wall heat transfer was applied to prevent fluid temperature oscillation. To validate the performance of newly developed code CSPACE, we analyzed typical severe accident scenarios for OPR1000 (Optimized Power Reactor 1000), which were initiated from large break loss of coolant accident, small break loss of coolant accident, and station black out accident. The results including thermal hydraulic behavior of RCS, core damage progression, hydrogen generation, corium behavior in the lower head, reactor vessel failure were reasonable and consistent. We demonstrate that CSPACE provides a good platform for the prediction of severe accident progression by detailed review of analysis results and a qualitative comparison with the results of previous MELCOR analysis.

비상노심냉각계통을 제거한 압력관형 피동 수냉각로 (Proposed Concept of a Tube-Type Passive Water-Cooled Reactor Without Emergency Core Cooling System)

  • Chang, Soon-Heung;Baek, Won-Pil;Lee, Goung-Jin;Lee, Jae-Young
    • Nuclear Engineering and Technology
    • /
    • 제26권2호
    • /
    • pp.161-167
    • /
    • 1994
  • 본 논문은 비상노심냉각계통을 필요로 하지 않는 압력관형 피동 수냉각로 개념을 제시한다. 여기서는 사고시 핵연료에서 생성되는 열을 감속재로 효과적으로 전달시키기 위해 금속 핵연료 매트릭스를 사용하는 핵연료 채널을 채택한다. 정상 운전시에는 보통의 냉각재가 핵연료를 냉각시키지만, 냉각재상실사고를 포함하여 정상적인 냉각계통의 작동이 이루어지지 않을 경우에는 피동 감속재냉각계통에 의해 핵연료가 냉각된다. 유한요소 코드를 이용한 해석 결과, 정상 상태 및 사고시 핵연료 온도를 허용 한도 이내로 유지할 수 있는 것으로 나타났다.

  • PDF

Variability of plant risk due to variable operator allowable time for aggressive cooldown initiation

  • Kim, Man Cheol;Han, Sang Hoon
    • Nuclear Engineering and Technology
    • /
    • 제51권5호
    • /
    • pp.1307-1313
    • /
    • 2019
  • Recent analysis results with realistic assumptions provide the variability of operator allowable time for the initiation of aggressive cooldown under small break loss of coolant accident or steam generator tube rupture with total failure of high pressure safety injection. We investigated how plant risk may vary depending on the variability of operators' failure probability of timely initiation of aggressive cooldown. Using a probabilistic safety assessment model of a nuclear power plant, we showed that plant risks had a linear relation with the failure probability of aggressive cooldown and could be reduced by up to 10% as aggressive cooldown is more reliably performed. For individual accident management, we found that core damage potential could be gradually reduced by up to 40.49% and 63.84% after a small break loss of coolant accident or a steam generator tube rupture, respectively. Based on the importance of timely initiation of aggressive cooldown by main control room operators within the success criteria, implications for improvement of emergency operating procedures are discussed. We recommend conducting further detailed analyses of aggressive cooldown, commensurate with its importance in reducing risks in nuclear power plants.

Simulation of Containment Pressurization in a Large Break-Loss of Coolant Accident Using Single-Cell and Multicell Models and CONTAIN Code

  • Noori-Kalkhoran, Omid;Shirani, Amir Saied;Ahangari, Rohollah
    • Nuclear Engineering and Technology
    • /
    • 제48권5호
    • /
    • pp.1140-1153
    • /
    • 2016
  • Since the inception of nuclear power as a commercial energy source, safety has been recognized as a prime consideration in the design, construction, operation, maintenance, and decommissioning of nuclear power plants. The release of radioactivity to the environment requires the failure of multiple safety systems and the breach of three physical barriers: fuel cladding, the reactor cooling system, and containment. In this study, nuclear reactor containment pressurization has been modeled in a large break-loss of coolant accident (LB-LOCA) by programming single-cell and multicell models in MATLAB. First, containment has been considered as a control volume (single-cell model). In addition, spray operation has been added to this model. In the second step, the single-cell model has been developed into a multicell model to consider the effects of the nodalization and spatial location of cells in the containment pressurization in comparison with the single-cell model. In the third step, the accident has been simulated using the CONTAIN 2.0 code. Finally, Bushehr nuclear power plant (BNPP) containment has been considered as a case study. The results of BNPP containment pressurization due to LB-LOCA have been compared between models, final safety analysis report, and CONTAIN code's results.

Estimation of LOCA Break Size Using Cascaded Fuzzy Neural Networks

  • Choi, Geon Pil;Yoo, Kwae Hwan;Back, Ju Hyun;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • 제49권3호
    • /
    • pp.495-503
    • /
    • 2017
  • Operators of nuclear power plants may not be equipped with sufficient information during a loss-of-coolant accident (LOCA), which can be fatal, or they may not have sufficient time to analyze the information they do have, even if this information is adequate. It is not easy to predict the progression of LOCAs in nuclear power plants. Therefore, accurate information on the LOCA break position and size should be provided to efficiently manage the accident. In this paper, the LOCA break size is predicted using a cascaded fuzzy neural network (CFNN) model. The input data of the CFNN model are the time-integrated values of each measurement signal for an initial short-time interval after a reactor scram. The training of the CFNN model is accomplished by a hybrid method combined with a genetic algorithm and a least squares method. As a result, LOCA break size is estimated exactly by the proposed CFNN model.

SBLOCA AND LOFW EXPERIMENTS IN A SCALED-DOWN IET FACILITY OF REX-10 REACTOR

  • Lee, Yeon-Gun;Park, Il-Woong;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • 제45권3호
    • /
    • pp.347-360
    • /
    • 2013
  • This paper presents an experimental investigation of the small-break loss-of-coolant accident (SBLOCA) and the loss-of-feedwater accident (LOFW) in a scaled integral test facility of REX-10. REX-10 is a small integral-type PWR in which the coolant flow is driven by natural circulation, and the RCS is pressurized by the steam-gas pressurizer. The postulated accidents of REX-10 include the system depressurization initiated by the break of a nitrogen injection line connected to the steam-gas pressurizer and the complete loss of normal feedwater flow by the malfunction of control systems. The integral effect tests on SBLOCA and LOFW are conducted at the REX-10 Test Facility (RTF), a full-height full-pressure facility with reduced power by 1/50. The SBLOCA experiment is initiated by opening a flow passage out of the pressurizer vessel, and the LOFW experiment begins with the termination of the feedwater supply into the helical-coil steam generator. The experimental results reveal that the RTF can assure sufficient cooldown capability with the simulated PRHRS flow during these DBAs. In particular, the RTF exhibits faster pressurization during the LOFW test when employing the steam-gas pressurizer than the steam pressurizer. This experimental study can provide unique data to validate the thermal-hydraulic analysis code for REX-10.

Study on the effect of flow blockage due to rod deformation in QUENCH experiment

  • Gao, Pengcheng;Zhang, Bin;Shan, Jianqiang
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.3154-3165
    • /
    • 2022
  • During a loss-of-coolant accident (LOCA) in the pressurized water reactor (PWR), there is a possibility that high temperature and internal pressure of the fuel rods lead to ballooning of the cladding, which causes a partial blockage of flow area in a subchannel. Such flow blockage would influence the core coolant flow, thus affecting the core heat transfer during a reflooding phase and subsequent severe accident. However, most of the system analysis codes simulate the accident process based on the assumed channel blockage ratio, resulting in the fact that the simulation results are not consistent with the actual situation. This paper integrates the developed core Fuel Rod Thermal-Mechanical Behavior analysis (FRTMB) module into the self-developed severe accident analysis code ISAA. At the same time, the existing flow blockage model is improved to make it possible to simulate the change of flow distribution due to fuel rod deformation. Finally, the ISAA-FRTMB is used to simulate the QUENCH-LOCA-0 experiment to verify the correctness and effectiveness of the improved flow blockage model, and then the effect of clad ballooning on core heat transfer and subsequent parts of core degradation is analyzed.