• Title/Summary/Keyword: Loss of element

Search Result 1,216, Processing Time 0.024 seconds

Prediction of Transmission Loss of Elliptic Expansion Chamber with Mean Flow by 3-Dimensional Finite Element Method (3차원 유한요소법을 이용한 타원 단면 소음기의 투과 손실 계산)

  • 윤성기;이응식
    • Journal of KSNVE
    • /
    • v.3 no.3
    • /
    • pp.271-278
    • /
    • 1993
  • Acoustic characteristics of silencer system are affected by various geometric parameters such as cross sectional geometry, size of chamber, and location of inlet-outlet port. It is impossible to obtain exact solutions of the equations of acoustic wave propagation except few simple cases. So, we resort to numerical techniques to analyze performance of acoustic system. In this work, finite element formulation has been obtained to predict transmission loss of an arbitrary 3-dimensional muffler in the presence of mean flow of low mach number. The effect of the degree of the ellipticity of expansion chambers on the transmission loss has been studied using the resulting finite element equation.

  • PDF

Design of Interference Type Noise Barrier Using the BEM (경계요소법을 이용한 간섭형 방음벽의 설계)

  • 이상권;이승영
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.11
    • /
    • pp.831-837
    • /
    • 2003
  • This paper investigates the insertion loss of nosie barrier with a interference device, The efficiency of the conventional interference-type noise barrier depends on specific frequency, Thus this study is performed to improve the efficiency of the nosie barrierin the range of broadband frequency. by changing the shape of interference device and adding the channel with various depths, The boundary element method (BEM) is used to predict the insertion loss of noise barrier. Two-dimensional boundary element model is created to simulate the performance of long barrier with a line source.

Design of Interference Type Noise Barrier Using The BEM (경계요소법을 이용한 간섭형 방음벽의 설계)

  • Lee, Seung-Young;Lee, Sang-Kwon;Cho, Sung-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.749-754
    • /
    • 2002
  • This paper investigates the insertion loss of nosie barrier with a interference device. The efficiency of the conventional interference-type noise barrier depends on specific frequency. Thus this study is performed to improve the efficiency of the nosie barrier in the range of broadband frequency, by changing the shape of interference device and adding the channel with various depths. The boundary element method (BEM) is used to predict the insertion loss of noise barrier. Two-dimensional boundary element model is created to simulate the performance of long barrier with a line source.

  • PDF

Experimental Study On Power Flow Finite Element Method of Vibration of a Plate Partially Covered with a Damping Sheets (부분 제진 평판 진동 해석을 위한 파워흐름유한요소법의 실험적 연구)

  • Lee, Y.H.;Lee, J.Y.;Kil, H.G.;Hong, S.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.496-497
    • /
    • 2009
  • In this paper the power flow finite element method (PFFEM) has been used to analyze the vibration of a plate partially covered with a damping sheet. Experiments have been performed to measure the loss factor and frequency response functions of the plate partially covered with the damping sheet. The data for the loss factor has been used as the input data to predict the vibration of the coupled plates with PFFEM. The comparison between the experimental results and the predicted PFFEM results for the frequency response functions has been performed. It showed that PFFEM can be effectively used to predict structural vibration in medium-to-high frequency ranges.

  • PDF

Design of Wide-band Sleeve Monopole Antenna that 4 PCS of Post Type Parasitic Element is Added (4개의 Post 형태 기생소자를 추가한 광대역 슬리브 모노폴 안테나 설계)

  • Lee, Sang-Woo;Kim, Kab-Ki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.1
    • /
    • pp.7-13
    • /
    • 2007
  • In this paper, we have designed and fabricated a small size wide-band monopole antenna which can integrate the frequency of previous business mobile communication system by adding 4 PCS of post type parasitic element on top-loaded sleeve monopole antenna. We have observed the properties of return loss upon a parameter change of element, and we also examined radiation properties in the band of PCS, W-CDMA, WiBro, W-LAN and S-DMB in order to make sure the suggested antenna's wide-band properties. We have found that the proposed antenna has omni-direction in horizontal plane and figure eight-direction in vertical plane, and we could have good return loss($Return\;loss{\leq}-10\;dB$) and $1.14{\sim}3.66\;dBi$ gain in $1.67{\sim}3.55\;GHz$ of frequency range($B/W{\fallingdotsep}72%$).

The Analysis of Energy Loss of Pneumatic Tire and Non-pneumatic Tire on Impact (공기압 타이어와 비 공기압 타이어의 노면 충격 시 에너지 손실 연구)

  • Kim, Jinkyu;Jo, Hongjun;Kim, Heecheol;Kim, Dooman
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.110-116
    • /
    • 2014
  • For the prevention of environmental pollution, there have been many researches which are eco-friendly vehicles in the automobile industry. In this paper, we studied for the non-pneumatic tires(NPT)can increase fuel consumption compared to conventional pneumatic tires. On driving, energy loss of tires occur when tires impact an obstacle on the road. This energy loss directly is relate to the fuel efficiency. Therefore, the energy loss of non-pneumatic tires is compared before and after impact. In this study, the results of energy loss of non-pneumatic tires and pneumatic tires was compared, when tires are rolled over an obstacle. As a result, the energy loss of non-pneumatic tires was less than pneumatic tires. This researches were performed the ABAQUS using finite element method and obtained the difference of velocity and kinetic energy from the program.

A Method of Analysis to Predict Sound Transmission Loss of an Extruded Aluminum Panel for Use on Railway Vehicles (철도차량용 알루미늄 압출재의 음향 투과손실 예측에 관한 연구)

  • Kim, Kwanju;Lee, Jun-Heon;Kim, Dae-Yong;Kim, Seock-Hyun
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.1
    • /
    • pp.20-25
    • /
    • 2013
  • The frame elements of modern high speed trains are typically fabricated with extruded aluminum panels. However, the sound transmission loss (STL) of extruded aluminum panels is less satisfactory than flat panels with the same surface density. This study proposes a method for prediction of the sound transmission loss of extruded aluminum panels using finite element analysis. The panel is modeled by finite element analysis, and the STL is calculated using a measure of Sommerfeld radiation at the specimen surface, boundary conditions, and the internal loss factor of the material. In order to verify the validity of the predicted value, intensity transmission loss was measured on the aluminum specimen according to ASTM E2249-02. The proposed method of analysis will be utilized to predict the sound insulation performance of extruded aluminum panels for railway vehicles in the design stage, and to establish measures for their improvement.

AC loss of HTS magnet for AMR refrigerator using magnetic field formulation and edge element in cylindrical coordinates

  • Kim, Seokho;Park, Minwon;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.1
    • /
    • pp.29-34
    • /
    • 2013
  • AMR (Active Magnetic Regenerative) refrigerators require the large variation of the magnetic field and a HTS magnet can be used. The amount of AC loss is very important considering the overall efficiency of the AMR refrigerator. However, it is very hard to estimate the precise loss of the HTS magnet because the magnetic field distribution around the conductor itself depends on the coil configuration and the neighboring HTS wires interact each other through the distorted magnetic field by the screening current Therefore, the AC loss of HTS magnet should be calculated using the whole configuration of the HTS magnet with superconducting characteristic. This paper describes the AC loss of the HTS magnet by an appropriate FEM approach, which uses the non-linear characteristic of HTS conductor. The analysis model is based on the 2-D FEM model, called as 'magnetic field formulation and edge-element model', for whole coil configuration in cylindrical coordinates. The effects of transport current and stacked conductors on the AC loss are investigated considering the field-dependent critical current. The PDE model of 'Comsol multiphysics' is used for the FEM analysis with properly implemented equations for axisymmetric model.

The Fluid Loss and Sealing Mechanisms in Slurry Trench Condition (II) : Finite Element Models of Fluid Loss for a Slurry Trench (Slurry wall 공법에서 안정액의 역할 (II) : 유한요소해석법 적용)

  • Kim, Hak-Moon
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.249-256
    • /
    • 2002
  • The stability of slurry trench system is closely associated with the characteristics of the filter cake (assumed impervious membrane) transferring the hydrostatic force of slurry to the trench walls. The effectiveness of this assumption in a wide range of trench systems has been examined with the aid of a Finite Element program. Build up of excess porewater pressure in the soil mass behind the filter cake is a function of the slurry density, the properties of filter cake, the ground conditions, time, the geometry of trench and the original ground water level. These factors were all investigated by the Finite Element Method. The most significant factors were found to be the ground conditions and the properties of filter cake.

Behavior of multi-story steel buildings under dynamic column loss scenarios

  • Hoffman, Seth T.;Fahnestock, Larry A.
    • Steel and Composite Structures
    • /
    • v.11 no.2
    • /
    • pp.149-168
    • /
    • 2011
  • This paper presents a computational study of column loss scenarios for typical multi-story steel buildings with perimeter moment frames and composite steel-concrete floors. Two prototype buildings (three-story and ten-story) were represented using three-dimensional nonlinear finite element models and explicit dynamic analysis was used to simulate instantaneous loss of a first-story column. Twelve individual column loss scenarios were investigated in the three-story building and four in the ten-story building. This study provides insight into: three-dimensional load redistribution patterns; demands on the steel deck, concrete slab, connections and members; and the impact of framing configuration, building height and column loss location. In the dynamic simulations, demands were least severe for perimeter columns within a moment frame, but the structures also exhibited significant load redistribution for interior column loss scenarios that had no moment connectivity. Composite action was observed to be an important load redistribution mechanism following column loss and the concrete slab and steel deck were subjected to high localized stresses as a result of the composite action. In general, the steel buildings that were evaluated in this study demonstrated appreciable robustness.