• Title/Summary/Keyword: Loss of area

Search Result 2,736, Processing Time 0.04 seconds

Risk Assessment of Soil Erosion in Gyeongju Using RUSLE Method (RUSLE 기법을 이용한 경주지역의 토양침식 위험도 평가)

  • Oh, Jeong-Hak;You, Ju-Han;Kim, Kyung-Tae;Lee, Woo-Sung
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.3
    • /
    • pp.313-324
    • /
    • 2011
  • The purpose of this study is to present the raw data for establishing the plan of top soil conservation in soil environment and preventing the soil loss by establishing the potential amount of soil loss using RUSLE. The results are as follows. To apply the RUSLE model, we calculated the potential amount of soil loss by using 5 factors; rainfall erosion factor(R), topographical factor(LS), soil erosion factor(K), land cover factor(C) and erosion control factor(P). The assessment map of soil loss was drawn up by classifying 5 grades. According to the soil loss estimation by the RUSLE, it showed that approximately 83.9% of the study area had relatively lower possibility of soil loss which was the 1 ton/ha in annual soil loss. Whereas, the 7.0% of the study area was defined as high risk area which was the 10 ton/ha in annual. Therefore, this area was needed that there was environment-friendly construction of farm land, improvement of cultivation environment and so forth. In future, if we will analyze the amount of soil loss of Gyeongju national park and Hyeongsan river watershed, we will offer the help to establishing the conservation plan of soil environment in Gyeongsangbuk-do.

Applicability Analysis of Head Loss Coefficients at Surcharge Manholes for Inundation Analysis in Urban Area (도시침수해석을 위한 과부하 맨홀의 손실계수 적용성 분석)

  • Kim, Chae Rin;Kim, Jung Soo;Yoon, Sei Eui
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.3
    • /
    • pp.395-406
    • /
    • 2018
  • The XP-SWMM model, widely used for inundation analysis of urban watersheds, underestimated the inundation area (range) because the manhole was regarded as a node and the influence of the local loss occurring in the surcharged manhole can not be considered. Therefore, it is necessary to analyze the applicability of the head loss coefficients considering the local loss in the surcharged manholes in inundation analysis using XP-SWMM. The Dorim 1 drainage section of the Dorim-river watershed, where frequent domestic flood damage occurred, was selected as the study watershed. The head loss coefficients of the surcharged manholes estimated from the previous experimental studies were applied to the inundation analysis, and the changes of the inundation area with and without the application of the head loss coefficients with manhole types were compared and analyzed. As a result of inundation simulation with the application of head loss coefficients, the matching rates were increased by 17% in comparison with the without application of them. In addition, the simulated inundation area applied only the head loss coefficients of straight path manholes and applied up to the head loss coefficients of combining manholes ($90^{\circ}$ bend, 3-way, and 4-way) were similar. Therefore, in order to accurately simulate the storm drain system in urban areas, it could be to carry out two-dimensional inundation analysis considering the head loss coefficients at the surcharged manholes. It was expected that the study results will be utilized as basic data for establishing the identification of the inundation risk area.

Horizontal attachment loss in extracted teeth due to severe periodontitis (중증 치주염에 의해 발거된 치아의 수평부착상실에 대한 연구)

  • Kim, Jin-Suk;Kim, Seong-Jo;Choi, Jeom-Il;Lee, Ju-Youn
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.1
    • /
    • pp.15-22
    • /
    • 2008
  • Purpose: The attachment level is strongly associated with tooth loss and provides useful information on patterns of destruction of the periodontium. The presence of horizontal attachment loss would not be detected in clinical measurement. Therefore, the purpose of the present study was to estimate the patterns of periodontal destruction based on the attachment area and horizontal attachment loss in extracted teeth due to severe periodontitis. Materials and Methods: 307 teeth satisfied the criteria for assessment. An indirect method, based on digital images obtained from a digital camera and an image analysis program, was used to calculate the area of root surface and attachment loss and the extent of horizontal attachment loss. The data were analysed using SPSS. Results: No statistically significant differences among root surfaces were observed in anterior teeth on the loss of attachment area. However, in posterior teeth statistically significant differences in palatal surfaces of maxillary and mandibular premolar and molar surfaces compared with buccal surfaces were observed. Horizontal attachment loss was observed in 21.5% of the teeth examined. Frequency of horizontal attachment loss was highest in the maxillary first premolar (34.8%), followed by the maxillary second premolar (27.3%) and maxillary canine (25%). The mean length of horizontal attachment loss was 1.5mm. Conclusion: More meticulous examination will be needed of the palatal surfaces of maxillary and mandibular premolar and molar teeth. The percentage of teeth with horizontal attachment loss greater than 2.1 mm was 5.2%. Considering the length of curette blades, about 5.2% of teeth were not properly debrided. Therefore, Additional supportive therapy such as local drug delivery has to be considered in treatment of the first maxillary, second premolar and canine due to the high prevalence of horizontal attachment loss.

Non-point Source Critical Area Analysis and Embedded RUSLE Model Development for Soil Loss Management in the Congaree River Basin in South Carolina, USA

  • Rhee, Jin-Young;Im, Jung-Ho
    • Spatial Information Research
    • /
    • v.14 no.4 s.39
    • /
    • pp.363-377
    • /
    • 2006
  • Mean annual soil loss was calculated and critical soil erosion areas were identified for the Congaree River Basin in South Carolina, USA using the Revised Universal Soil Loss Equation (RUSLE) model. In the RUSLE model, the mean annual soil loss (A) can be calculated by multiplying rainfall-runoff erosivity (R), soil erodibility (K), slope length and steepness (LS), crop-management (C), and support practice (P) factors. The critical soil erosion areas can be identified as the areas with soil loss amounts (A) greater than the soil loss tolerance (T) factor More than 10% of the total area was identified as a critical soil erosion area. Among seven subwatersheds within the Congaree River Basin, the urban areas of the Congaree Creek and the Gills Creek subwatersheds as well as the agricultural area of the Cedar Creek subwatershed appeared to be exposed to the risk of severe soil loss. As a prototype model for examining future effect of human and/or nature-induced changes on soil erosion, the RUSLE model customized for the area was embedded into ESRI ArcGIS ArcMap 9.0 using Visual Basic for Applications. Using the embedded model, users can modify C, LS, and P-factor values for each subwatershed by changing conditions such as land cover, canopy type, ground cover type, slope, type of agriculture, and agricultural practice types. The result mean annual soil loss and critical soil erosion areas can be compared to the ones with existing conditions and used for further soil loss management for the area.

  • PDF

Comparisons of the Consequences Based on the Damage Area and the Financial Loss in a Petrochemical Plant (석유화학공장에서 피해지역 및 재정적 손실에 의한 사고 피해크기 비교)

  • Kim, Bong-Hoon;Lee, Hern-Chang;Choi, Jae-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.6
    • /
    • pp.20-27
    • /
    • 2011
  • The consequence analysis (CA) is widely using in the petrochemical plant through adoption of the process safety management (PSM) system, but it has not practical problem that the CA was not reflected effects for employee count, business interruption loss, utility usage, and etc.. In this study, to establish the practical emergency response plan and to achieve risk based management, the consequence based on the damage area and the financial loss were estimated and compared through application on facilities in the petrochemical plant. If the damage area is used, the consequence category must be determined by safety area considering simultaneously damage area, fatality area and toxic area. Also, the consequences based on the financial loss is more practical method for the case of considering process properties and circumstances.

Effects of seeding methods and harvesting time on yield of perilla seeds

  • Jeon, Weon-Tai;Kwak, Kangsu;Bae, Jin-Woo;Han, Won-Young;Lee, Myoung-Hee;Ryu, Jong-Soo;Kang, Hang-Won;Jeong, Gun-Ho;Shim, KangBo;Heu, Sunggi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.197-197
    • /
    • 2017
  • In order to reduce the loss of perilla seeds at harvesting stage, different seeding methods and harvesting time had been applied to upland soil in NICS (National Institute of Crop Science), RDA, Milyang, Korea. The seeding methods were divided into hill and drill seeding, and harvesting time were 40%, 60%, 80%, and 100% color-changing of top cluster perilla (cv Deulsaem) seeds. Higher plant height and lowest flower cluster, thinner culm thickness was observed in drill seeding treated plot than hill seeding treated plot. However, field lodging occurred lower at drill seeding treatment (lodging degree 3) than hill seeding plot (lodging degree 5). Harvesting time affected the loss of perilla seeds and the loss rate of perilla seeds were investigated at different color-changing of top flower cluster. When seeds were harvested at 40%, 60%, 80%, and 100% color-changing of top cluster perilla seeds, the loss rate of hill and drill seeding showed no significant differences however the loss rated of 40, 60, 80, and 100 % color-changing of top flower cluster were 1.9% to 3.0%, 3.8% to 3.9%, 8.0% to 10.2%, and 16.1% to 22.7%, respectively. The harvesting time had no significant effects on the yield of perilla seeds. These results suggest that optimum harvesting time of perilla could be recommend at the 60% color-changing of top cluster to reduce the loss of perilla seeds.

  • PDF

The Effect to Agricultural Crop Yield and Sulfur Content in Leaves by Sulfur Dioxide Gas Emission from Onsan Nonferric Metal Industrial Complex (온산(溫山) 공단지역(工團地域)의 배출(排出)가스 (아황산(亞黃酸))가 농작물(農作物) 수량(收量) 및 식물체내(植物體內) 유황함량(硫黃含量)에 미치는 영향(影響))

  • Shin, Nam-Chul
    • Korean Journal of Environmental Agriculture
    • /
    • v.4 no.1
    • /
    • pp.52-56
    • /
    • 1985
  • This study was undertaken to investigate the crop yield of pear and rice cultivated around Onsan Industrial complex, the sulfur content in their leaves, and the crop loss. The correlation between them is as follows: 1) The sulfur content in pear and rice leaves in studied area is higher than that in unpolluted area, and there is crop loss in studied area. 2) There is a good correlation between sulfur content and crop loss of pear and rice. The air pollution in studied area is considered to be the reason of the crop loss. 3) The regression equation between the sulfur content in crop leaves and the crop loss seems to be useful for the crop loss rate by sulfur dioxide in the damaged area and that seems to be a good reference for the compensation of pear and rice loss by sulfur dioxide gas emission from Onsan Industral Complex.

  • PDF

A Study on the Environmental Factors affecting Child Loss through Correlation Analysis between Child Loss and Pedestrian Density in Large-scale Parks - Focused on Busan Citizens Park and Dream Forest - (대규모 공원에서의 미아발생과 보행밀도와의 상관분석을 통한 미아발생 환경요인 도출 - 부산시민공원과 북서울 꿈의 숲을 중심으로 -)

  • Choi, Soyoung;Choi, Jaepil
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.36 no.5
    • /
    • pp.59-70
    • /
    • 2020
  • The purpose of this study is to derive the environmental factors affecting child loss through correlation analysis between child loss and pedestrian density. The status of lost children was identified through the lost child records and interviews in large parks. In addition, the behavior survey was conducted by photographing the entire outdoor of each park, and visitors was marked on the behavioral maps. Also, the pedestrian density was analyzed by GIS as 100㎡ and 1㎡ grid. As a result, child loss was related to the pedestrian density rather than the number of visitors or the area. Especially, 'Dynamic pedestrian density' and 'Ratio of pedestrian in high density to area' was related to child loss. In other words, the more dynamic behaviors such as play and movement appear, and the more the local area of high density, the higher the probability of child loss. In addition, environmental factors that induce such high density include bottlenecks, overlap of circulation due to multi-functionality of space, concentration of rides, and concentration of guardians due to visual obstacles.

Assessment of Future Climate Change Impact on Soil Erosion Loss of Metropolitan Area Using Ministry of Environment Land Use Information (환경부 토지이용정보를 이용한 수도권의 미래 기후변화에 따른 토양유실 예측 및 평가)

  • Ha, Rim;Joh, Hyungkyung;Kim, Seongjoon
    • KCID journal
    • /
    • v.21 no.1
    • /
    • pp.89-98
    • /
    • 2014
  • This study is to evaluate the future potential impact of climate change on soil erosion loss in a metropolitan area using Revised Universal Soil Loss Equation(RUSLE) with land use information of the Ministry of Environment and rainfall data for present and future years(30-year period). The spatial distribution map of vulnerable areas to soil erosion was prepared to provide the basis information for soil conservation and long-term land use planning. For the future climate change scenario, the MIROC3.2 HiRes A1B($CO_2720ppm$ level 2100) was downscaled for 2040-2069(2040s) and 2070-2099(2080s) using the stochastic weather generator(LARS-WG) with average rainfall data during past 30 years(1980-2010, baseline period). By applying the climate prediction to the RUSLE, the soil erosion loss was evaluated. From the results, the soil erosion loss showed a general tendency to increase with rainfall intensity. The soil loss increased up to 13.7%(55.7 ton/ha/yr) in the 2040s and 29.8%(63.6 ton/ha/yr) in the 2080s based on the baseline data(49.0 ton/ha/yr).

  • PDF

Parameter Analysis of the Damage Area and the Financial Loss by the Gas Release Accident at Pressure Vessels (압력용기에서 가스 누출사고에 의한 피해지역 및재정적 손실의 매개변수 분석)

  • Kim, Bong-Hoon;Lee, Hern-Chang;Choi, Jae-Uk
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.5
    • /
    • pp.42-49
    • /
    • 2011
  • To achieve the safety management of an industry by using practical consequence analysis, parameters affecting damage area and financial loss by gas release accident were analyzed at pressure vessels containing flammable gas. As a result, the total financial loss cost was largely effected by the business interruption cost, and it was considered for equipment type and materials, process properties, and circumstances. Also, the consequences of the financial loss must be practically used more than the consequences of the damage area in industry.