• Title/Summary/Keyword: Loss of Offsite Power(LOOP)

Search Result 10, Processing Time 0.019 seconds

Probabilistic Safety Assessment of Offsite Power System Under Typhoon-induced High Wind (소외전력망의 태풍 동반 강풍 확률론적 안전성 평가)

  • Kim, Gungyu;Kwag, Shinyoung;Eem, Seunghyun;Jin, Seung-Seop
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.277-282
    • /
    • 2024
  • Recently, the intensity and frequency of typhoons have been increasing due to climate change, and typhoons can cause a loss of offsite power (LOOP) at nuclear power plants (NPPs). Therefore, it is necessary to prepare for typhoon-induced high winds through the probabilistic safety assessment (PSA) of offsite power systems. However, research on PSA for offsite power system in NPPs under typhoon-induced high winds is still lacking. In this study, PSA was performed for offsite power systems subjected to typhoon-induced high winds at the Kori NPP site, which has experienced frequent damages to its offsite power system among NPP sites in Korea. In order to perform PSA for typhoon-induced high winds in offsite power systems, the typhoon hazard at Kori NPP site was derived using logic tree and Monte Carlo simulation. Utilizing the fragility of components constituting the power system, performed a fragility analysis of the power system. Lastly, the probability that offsite power system will not be able to supply power to the NPP was derived.

ESTABLISHMENT OF A MAINTENANCE PROGRAM TO PREVENT LOSS OF OFFSITE POWER IN NUCLEAR POWER PLANTS

  • Lee, Eun-Chan;Na, Jang-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.45 no.6
    • /
    • pp.791-794
    • /
    • 2013
  • Since the Fukushima accident in 2011, the importance of the electrical systems in nuclear power plants (NPPs) has been emphasized. The result has been that NPP regulators are enhancing their monitoring of loss of offsite power (LOOP) events. Korea Hydro & Nuclear Power Co. (KHNP) is reviewing the status and issues related to LOOPs, and is attempting to establish specific countermeasures to prevent LOOPs, because they can have severe consequences in the complicated maintenance schedule during an outage. A starting point for preventing LOOPs is the control of the loss of voltage (LOV)-initiating components. In order to reflect this in the risk assessment program, an LOV monitor is being developed for use during plant outages.

A Study on the Analysis of Failures Related to Emergency Diesel Generators in Overseas Nuclear Power Plants (원전용 비상디젤발전기 국외 손상사례 분석에 관한 연구)

  • Chang, Jung-Hwan;Kim, Jin-Sung;Chung, Hae-Dong;Cho, Kwon-Hae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.5 no.1
    • /
    • pp.32-37
    • /
    • 2009
  • The emergency diesel generator (EDG) in a nuclear power plant (NPP) shall start within 10 secondss and supply electrical power to engineered safety features within one minute and less if a loss of offsite power (LOOP), A design-basis event, or their combination occur. Each NPP has an EDG set consisting of two diesel generators for redundancy. In addition to the EDG set, an alternate Alternating Current Diesel Generator (AAC DG) is installed and shared by several units to cope with a station black out (SBO), i.e., loss of the offsite power concurrent with reactor trip and unavailability of the EDG set. The objective of this study is to analyze the failure data of emergency diesel generators reported in overseas nuclear power plants.

  • PDF

Effects of house load operation on PSA based on operational experiences in Korea

  • Lim, Hak Kyu;Park, Jong-hoon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2812-2820
    • /
    • 2020
  • House load operation (HLO) occurs when the generator supplies power to the house load without triggering reactor trips during grid disturbances. In Korea, the HLO capability of optimized power reactor 1000 (OPR1000) plants has prevented several reactor trips. Operational experiences demonstrate the difference in the reactor trip incidence due to grid disturbances between OPR1000 plants and Westinghouse plants in Korea, attributable to the availability of the HLO capability. However, probabilistic safety assessments (PSAs) for OPR1000 plants have not considered their specific design features in the initiating event analyses. In an at-power PSA, the HLO capability can affect the initiating event frequencies of general transients (GTRN) and loss of offsite power (LOOP), resulting from transients within the grid system. The initiating event frequencies of GTRN and LOOP for an OPR1000 plant are reduced by 17.7% and 78.7%, respectively, compared to the Korean industry-average initiating event frequencies, and its core damage frequency from internal events is reduced by 15.2%. The explicit consideration of the HLO capability in initiating event analyses makes significant changes in the risk contributions of the initiating events. Consequently, for more realistic at-power PSAs in Korea, we recommend incorporating plant-specific HLO-related design features when estimating initiating event frequencies.

Review Criteria for Reliability from Analysis of LOOP frequency in NPPs (소외전원상실사고 빈도수 분석을 통한 원전 신뢰도 검토기준)

  • Moon, Su-Cheol;Kim, Kern-Joong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.300-305
    • /
    • 2013
  • LOOP(Loss of Offsite Power) and SBO(Station Blackout) events have been occurring in nuclear power plants should be reviewed and be controlled on important electrical equipments by professional engineer to prevent and to safety improvement from safety assessment and reliability analysis report. LOOP and SBO occasionally happened by internal or external causes. This paper contained that LOOP frequency in the United States NPPs and in the domestic NPPs have compared and analyzed data by the past lessons and probabilistic statistics. Additionally will be installed MG(Mobile Generator) according to the lessons of Fukushima nuclear accident in Japan, which CDF(Core Damage Frequency) and LOOP frequency have reconsidered. And this paper proposed to reduce reliability criteria using PSA(Probabilistic Safety Analysis).

A Safety Improvement for the Design Change of Westinghouse 2 Loop Auxiliary Feedwater System (웨스팅하우스형 원전의 보조급수계통 설계변경 영향 평가)

  • Na, Jang Hwan;Bae, Yeon Kyoung;Lee, Eun Chan
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.9 no.1
    • /
    • pp.15-19
    • /
    • 2013
  • The auxiliary feedwater is an important to remove the heat from the reactor core when the main feedwater system is unavailable. In most initiating events in Probabilistic Safety Assessment(PSA), the operaton of this system is required to mitigate the accidents. For one of domestic nuclear power plants, a design change of a turbine-driven auxiliary feedwater pump(TD-AFWP), pipe, and valves in the auxiliary system is implemented due to the aging related deterioration by long time operation. This change includes the replacement of the TD-AFWP, the relocation of some valves for improving the system availability, a new cross-tie line, and the installation of manual valves for maintenance. The design modification affects the PSA because the system is critical to mitigate the accidents. In this paper, the safety effect of the change of the auxiliary feedwater system is assessed with regard to the PSA view point. The results demonstrate that this change can supply the auxiliary feedwater from the TD-AFWP in the accident with the motor-driven auxiliary feedwater pump(MD-AFWP) unavailable due to test or maintenance. In addition, the change of MOV's normal position from "close" to "open" can deliver the water to steam generator in the loss of offsite power(LOOP) event. Therefore, it is confirmed that the design change of the auxiliary feedwater system reduces the total core damage frequency(CDF).

Preventing cascading failure of electric power protection systems in nuclear power plant

  • Moustafa, Moustafa Abdelrahman Mohamed Mohamed;Chang, Choong-koo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.121-130
    • /
    • 2021
  • Cascading failure is the main cause of large blackouts in electrical power systems; this paper analyzes a cascading failure in Hanbit nuclear power plant unit two (2) caused by a circuit breaker (CB) operation failure. This malfunction has been expanded to the loss of offsite power (LOOP). In this study, current practices are reviewed and then the methodologies of how to prevent cascading failures in protection power systems are introduced. An overview on the implementation of IEC61850 GOOSE messaging-based zone selective interlocking (ZSI) scheme as key solution is proposed. In consideration of ZSI blocking time, all influencing factors such as circuit breaker opening time, relay I/O response time and messages travelling time in the communication network should be taken into account. The purpose of this paper is to elaborate on the effect of cascading failure in NPP electrical power protection system and propose preventive actions for this failures. Finally, the expected advantages and challenges are elaborated.

Proposal of CPC Function Improvement

  • Lee, Byung-Il;Kim, Jong-Jin;Baek, Seung-Su;Kim, Hee-Cheol;Lee, Sang-Yong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.562-567
    • /
    • 1995
  • The concept of VLDT (Variable Low DNBR Trip), a new CPC trip function, was proposed and applied to the events of increase in secondary heat removal, such as an excess feedwater event anti an IOSGADV (Inadvertent Opening S/G Atmospheric Dump Valve). Major assumption used in this study was no time delay to LOOP (Loss of Offsite Power) after turbine trip. In case of using this VLDT function, safety criterion of DNB would not be violated under the same condition as previous analysis without any change in thermal margin.

  • PDF

FLB Event Analysis with regard to the Fuel Failure

  • Baek, Seung-Su;Lee, Byung-Il;Lee, Gyu-Cheon;Kim, Hee-Cheol;Lee, Sang-Keun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.622-627
    • /
    • 1996
  • Detailed analysis of Feedwater Line Break (FLB) event for the fuel failure point of view are lack because the event was characterized as the increase in reactor coolant system (RCS) pressure. Up to now, the potential of the rapid system heatup case has been emphasized and comprehensively studied. The cooldown effects of FLB event is considered to be bounded by the Steam Line Break (SLB) event since the cooldown effect of SLB event is larger than that of the FLB event. This analysis provides a new possible path which can cause the fuel failure. The new path means that the fuel failure can occur under the heatup scenario because the Pressurizer Safety Valves (PSVs) open before the reactor trips. The 1000 MWe typical C-E plant FLB event assuming Loss of Offsite Power (LOOP) at the turbine trip has been analyzed as an example and the results show less than 1% of the fuel failure. The result is well within the acceptance criteria. In addition to that, a study was accomplished to prevent the fuel failure for the heatup scenario case as an example. It is found that giving the proper pressure gap between High Pressurizer Pressure Trip (HPPT) analysis setpoint and the minimum PSV opening pressure could prevent the fuel failure.

  • PDF

A SE Approach for Real-Time NPP Response Prediction under CEA Withdrawal Accident Conditions

  • Felix Isuwa, Wapachi;Aya, Diab
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.2
    • /
    • pp.75-93
    • /
    • 2022
  • Machine learning (ML) data-driven meta-model is proposed as a surrogate model to reduce the excessive computational cost of the physics-based model and facilitate the real-time prediction of a nuclear power plant's transient response. To forecast the transient response three machine learning (ML) meta-models based on recurrent neural networks (RNNs); specifically, Long Short Term Memory (LSTM), Gated Recurrent Unit (GRU), and a sequence combination of Convolutional Neural Network (CNN) and LSTM are developed. The chosen accident scenario is a control element assembly withdrawal at power concurrent with the Loss Of Offsite Power (LOOP). The transient response was obtained using the best estimate thermal hydraulics code, MARS-KS, and cross-validated against the Design and control document (DCD). DAKOTA software is loosely coupled with MARS-KS code via a python interface to perform the Best Estimate Plus Uncertainty Quantification (BEPU) analysis and generate a time series database of the system response to train, test and validate the ML meta-models. Key uncertain parameters identified as required by the CASU methodology were propagated using the non-parametric Monte-Carlo (MC) random propagation and Latin Hypercube Sampling technique until a statistically significant database (181 samples) as required by Wilk's fifth order is achieved with 95% probability and 95% confidence level. The three ML RNN models were built and optimized with the help of the Talos tool and demonstrated excellent performance in forecasting the most probable NPP transient response. This research was guided by the Systems Engineering (SE) approach for the systematic and efficient planning and execution of the research.