• Title/Summary/Keyword: Loss and damage

Search Result 1,702, Processing Time 0.033 seconds

Effect of Repeated Immersion on Material Properties of Asphalt Mixtures (반복적인 수침이 아스팔트 혼합물의 재료물성에 미치는 영향)

  • Hwang, Sung-Do;Rhee, Suk-Keun
    • International Journal of Highway Engineering
    • /
    • v.10 no.1
    • /
    • pp.75-85
    • /
    • 2008
  • Moisture damage of asphalt mixtures can occur because of a loss of bond between the asphalt binder and the fine and coarse aggregates. Therefore, moisture damage on asphalt pavements is the main cause of potholes, which is one of the main distress type of asphalt pavement. The purpose of this study is to evaluation effect moisture damage on material properties of asphalt mixtures through the laboratory performance test. The existing Modified Lottman test procedure was improved and the number of times that thermal cyclic conditioning can be added until the asphalt mixtures is damaged, was tested in order to exhibit the changes of the material properties because of moisture damage by immersion. Through the above experiments, it was found that the material properties of asphalt mixtures on room-temperature were rapidly decreased with loss of about 50% at initial stage of moisture damage caused by the amount of repeated immersion. Also, it was found that the property damage ratio using material properties of failure energy and $DCSE_f$ by test temperature $25^{\circ}C$ were showed a high relationship to moisture damage of the asphalt mixtures caused by the amount of repeated immersion.

  • PDF

A Study on Financial Loss Assessment of Voltage Sags (순간전압강하 경제적 손실 평가 연구)

  • Park, Jomg-Il;Song, Young-Won;Park, Chang-Hyun;Jang, Gil-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.324-325
    • /
    • 2011
  • This paper addresses the assessment of voltage sag costs based on the stochastic prediction of voltage sags. When voltage sags below a certain voltage threshold occur at sensitive industrial process, the industrial customer will experience financial damage. In order to mitigate voltage sag costs and devise efficient solutions to mitigate damage, a study on the financial loss assessment of voltage sags is basically needed. In order to assess the voltage sag costs, the expected sag frequency at a sensitive load point should be calculated by using the concept of the area of vulnerability and historical fault statistics. Then, financial loss due to voltage sags can be obtained by multiplying the expected sag frequency by the cost per sag event.

  • PDF

The Effect of Seawater Temperature on the Electrochemical Corrosion Behaviour of Stainless Steels and Anodized Aluminum Alloys (스테인리스강과 양극산화된 알루미늄 합금의 전기화학적 부식특성에 미치는 해수온도의 영향)

  • Chong, Sang-Ok;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.85-93
    • /
    • 2021
  • The corrosion damage of materials in marine environment mainly occurs by Cl- ions due to the breakdown of passive films. Additionally, various characteristics in seawater such as salinity, temperature, immersion time, flow rate, and biological activity also affect corrosion characteristics. In this study, the corrosion characteristics of stainless steels (STS 304 and STS 316L) and anodized aluminum alloys (AA 3003 and AA 6063) were evaluated with seawater temperature parameters. A potentiodynamic polarization experiment was conducted in a potential range of -0.25 V to 2.0 V at open circuit potential (OCP). Corrosion current density and corrosion potential were obtained through the Tafel extrapolation method to analyze changes in corrosion rate due to temperature. Corrosion behavior was evaluated by measuring weight loss before/after the experiment and also observing surface morphology through a scanning electronic microscope (SEM) and 3D microscopy. Weight loss, maximum damage depth and pitting damage increased as seawater temperature increased, and furthermore, the tendency of higher corrosion current density with an increase of temperature attributed to an increase in corrosion rate. There was lower pitting damage and lower corrosion current density for anodized aluminum alloys than for stainless steels as the temperature increased.

Solid Particle Erosion Properties of Hot-Dip Aluminized Economizer Steel Tube (용융 알루미늄 도금된 절탄기 강재 튜브의 고상입자 침식 특성)

  • Park, Il-Cho;Han, Min-Su
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.384-390
    • /
    • 2021
  • In this paper, durability evaluation and surface damage mechanism were investigated through solid particle erosion (SPE) test after applying hot-dip aluminizing (HDA) technology for the purpose of maintenance of marine economizer tube. Damaged surface shape was analyzed using SEM and 3D microscope. Compositional changes and microstructure of the HDA layer were analyzed through EDS and XRD. Durability was evaluated by analyzing weight loss and surface damage depth after SPE. HDA was confirmed to have a two-layer structure of Al and Al5Fe2. HDA+HT was made into a single alloy layer of Al5Fe2 by diffusion treatment. In the microstructure of HDA+HT, void and crack defect were induced during the crystal phase transformation process. The SPE damage mechanism depends on material properties. Plastic deformation occurred in the substrate and HDA due to ductility, whereas weight loss due to brittleness occurred significantly in HDA+HT. As a result, the substrate and HDA showed better SPE resistance than HDA+HT.

Damage Effects on the Natural Frequency of Concrete Pier (구체손상에 따른 콘크리트 교각의 고유진동수 변화)

  • Park, Byung-Cheal;Oh, Keum-Ho;Park, Seung-Bum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.335-338
    • /
    • 2005
  • This study was performed to verify that the impact vibration test on the damaged concrete pier can be adopted for assessment of the bridge substructure integrity. Using the experimental modal analysis, the dynamic property changes of the concrete pier are investigated according to the damage levels which are modeled by the loss of cross section area of the pier body. As a result of the impact vibration test, it is found that the natural frequency of the bridge substructure is reduced due to the damage on the pier such as loss of cross section area, and the natural frequency can be used for assessment of the integrity index.

  • PDF

The effect of sound stress on laying hen performance (소음스트레스에 의한 산난계의 피해상황 연구)

  • 신창호;한귀섭;박현기;이용범
    • Korean Journal of Veterinary Service
    • /
    • v.23 no.3
    • /
    • pp.263-269
    • /
    • 2000
  • This study was carried out to set a standard of damage compensation by researching state of damage due to noises in laying and prelaying hens. Recently, there are many damage cases in chicken farms near construction site that were caused by noises of construction. Therefore disputes and complaints about economical loss have increased ceaselessly. But we have few research and report such a thing. The result have shown that the weight loss rate was ranged from 9.48% to 23.2% and mortality of laying period of hens was higher than prelaying period. Pathological findings were fatty liver, congestion and hemorrhage of intestine, erosion of proventriculus and gizzard in order of case frequency. And these signs in hens of laying period was more serious than prelaying period. Half-life rate of antibody titers against Newcastle disease and infectious bronchitis in sound stressed hens was no different compared with non-stressed hens. Egg production rate dropped from 38% to 45% according to strength of noises. Before being stressed, hens produced special, large, middle, small-size eggs in the order. But after being stressed, their egg Production rate of middle, small-size Increased while egg production rate of special, large-size decreased. Production rate of soft and broken shell eggs was 0.015% in the stressed flocks higher than 0.005% in the non-stressed flocks.

  • PDF

Cavitation Damage Characteristics of Al and Zn Arc Thermal Spray Coating Layers for Hull Structural Steel (선체 구조용 강재에 대한 Al과 Zn 아크용사코팅 층의 캐비테이션 손상 특성)

  • Park, Il-Cho;Kim, Seong-Jong
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.1
    • /
    • pp.32-39
    • /
    • 2016
  • In this study, Al and Zn arc thermal spray coatings were carried out onto the substrate of SS400 steel to improve corrosion resistance and durability of hull structural steel for ship in marine environment. Therefore cavitation-erosion test was conducted to evaluate the durability of painted and thermal spray coated specimens. And then the damaged surface morphology and weight loss were obtained to compare with each other, respectively. As a result, the painted specimen was the poorest cavitation resistance characteristics because surface damage behavior appeared to be exfoliated in bulk shape during the cavitation experiment. And Zn thermal spray coating layer presented the significant surface damage depth due to relatively low surface hardness and local cavitation damage tendency. On the other hand, as a result of the weight loss analysis, the painting layer presented the poorest cavitation resistance and the Al thermal spray coating layer relatively showed the best results after cavitation experiment.

Hybrid Damage Monitoring Technique for Plate Girder Bridges using Acceleration-Impedance Signatures (판형교의 가속도-임피던스 신호를 이용한 하이브리드 손상 모니터링 기법)

  • Hong, Dong-Soo;Cho, Hyun-Man;Na, Won-Bae;Kim, Jeong-Tae;Park, Gyu-Hae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.197-202
    • /
    • 2008
  • In this paper, a hybrid vibration-impedance approaches is newly proposed to detect the occurrence of damage, the location of damage, and extent of damage in steel plate-girder bridges. The hybrid scheme mainly consists of three sequential phases: 1) to alarm the occurrence of damage, 2) to classify the alarmed damage, and 3) to estimate the classified damage in detail. Damage types of interest include flexural stiffness-loss in girder and bolts-loose in supports. In the first phase, the global occurrence of damage is alarmed by monitoring changes in acceleration features. In the second phase, the alarmed damage is classified into subsystems by recognizing patterns of impedance features. In the final phase, the location and the extent of damage are estimated by using modal strain energy-based damage index method and root mean square deviation method. The feasibility of the proposed system is evaluated on a laboratory-scaled steel plate-girder bridge model for which hybrid vibration-impedance signatures were measured for several damage scenarios.

  • PDF

Multi-stage structural damage diagnosis method based on "energy-damage" theory

  • Yi, Ting-Hua;Li, Hong-Nan;Sun, Hong-Min
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.345-361
    • /
    • 2013
  • Locating and assessing the severity of damage in large or complex structures is one of the most challenging problems in the field of civil engineering. Considering that the wavelet packet transform (WPT) has the ability to clearly reflect the damage characteristics of structural response signals and the artificial neural network (ANN) is capable of learning in an unsupervised manner and of forming new classes when the structural exhibits change, this paper investigates a multi-stage structural damage diagnosis method by using the WPT and ANN based on "energy-damage" theory, in which, the wavelet packet component energies are first extracted to be damage sensitive feature and then adopted as input into an improved back propagation (BP) neural network model for damage diagnosis in a step by step mode. To validate the efficacy of the presented approach of the damage diagnosis, the benchmark structure of the American Society of Civil Engineers (ASCE) is employed in the case study. The results of damage diagnosis indicate that the method herein is computationally efficient and is able to detect the existence of different damage patterns in the simulated experiment where minor, moderate and severe damages corresponds to involving in the loss of stiffness on braces or the removal bracing in various combinations.

Analysis of Damage Mechanism for Optimum Design in Discontinuously-Reinforced Composites (불균질입자강화 복합재료의 최적설계를 위한 손상메커니즘 해석)

  • 조영태;조의일
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.4
    • /
    • pp.106-112
    • /
    • 2004
  • In particle or short-fiber reinforced composites, cracking or debonding of the reinforcements cause a significant damage mode because the damaged reinforcements lose load carrying capacity. The average stress in the inhomogeneity represents its load carrying capacity, and the difference between the average stresses of the intact and broken inhomogeneities indicates the loss of load carrying capacity due to cracking damage. The composite in damage process contains intact and broken reinforcements in a matrix. An incremental constitutive relation of discontinuously-reinforced composites including the progressive cracking damage of the reinforcements have been developed based on the Eshelby's equivalent inclusion method and Mori-Tanaka's mean field concept. Influence of the cracking damage on the stress-strain response of the composites is demonstrated.