• Title/Summary/Keyword: Loss and damage

Search Result 1,702, Processing Time 0.031 seconds

Economic and non-economic loss and damage to climate change: evidence from a developing country shrimp farms to cyclone Bulbul

  • Islam, Md. Monirul;Nipa, Tanjila Akter;Islam, Md. Sofiqul;Hasan, Mahmudul;Khan, Makidul Islam
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.4
    • /
    • pp.214-230
    • /
    • 2022
  • Loss and damage have become a vital contemporary issue in climate change studies and actions in developing countries. However, studies are scant on this in the fisheries sector around the world. In Bangladesh, there is no study on the loss and damage in fisheries dependent communities. This study assesses economic and non-economic loss and damage to coastal shrimp farms due to cyclone Bulbul in Gabura Union of Shyamnagar Upazila, Satkhira district, using a mixed method approach. Results show that all shrimp farms' dependent communities are affected by cyclone Bulbul to some extent. About 14%, 57%, and 29% of the farms were totally, heavily and moderately damaged due to farm inundation and dyke damage. The estimated mean loss and damage per shrimp farm was worth USD 4,633. Around 31% and 72% of the farms' fencing nets and traps were lost, which was worth USD 333 per farm. There were also loss and damage to other resources such as houses, solar panels, livestock and agricultural crops where the estimated mean loss and damage per household was worth USD 3,170. This study reported that the rich shrimp farmers encountered proportionately more economic loss and damage than their poor counterparts. However, this does not mean that the poor suffered less. The current study found a range of non-economic loss and damage in different aspects of the shrimp farmers' household members such as unbearable mental pain, deterioration of health, physical injuries, disabilities, etc. and access to services (e.g., inadequate food, lack of safe drinking water, lack of medical facilities, disruption of education systems), social infrastructure (e.g., damage of roads and markets) and disturbance of cultural functions. The findings suggest that urgent short- and long-term actions may be taken to save the aquaculture farms and dependent livelihoods from economic and non-economic loss and damage to cyclones in future.

Hybrid Damage Monitoring Scheme of PSC Girder Bridges using Acceleration and Impedance Signature (가속도 및 임피던스 신호를 이용한 PSC 거더교의 하이브리드 손상 모니터링 체계)

  • Kim, Jeong-Tae;Park, Jae-Hyung;Hong, Dong-Soo;Na, Won-Bae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.135-146
    • /
    • 2008
  • In this paper, a hybrid damage monitoring scheme for prestressed concrete (PSC) girder bridges by using sequential acceleration and impedance signatures is newly proposed. Damage types of interest include prestress-loss in tendon and flexural stiffness-loss in a concrete girder. The hybrid scheme mainly consists of three sequential phases: damage alarming, damage classification, and damage estimation. In the first phase, the global occurrence of damage is alarmed by monitoring changes in acceleration features. In the second phase, the type of damage is classified into either prestress-loss or flexural stiffness-loss by recognizing patterns of impedance features. In the third phase, the location and the extent of damage are estimated by using two different ways: a mode shape-based damage detection to detect flexural stiffness-loss and a natural frequency-based prestress prediction to identify prestress-loss. The feasibility of the proposed scheme is evaluated on a laboratory-scaled PSC girder model for which hybrid vibration-impedance signatures were measured for several damage scenarios of prestress-loss and flexural stiffness-loss.

Incorporation of collapse safety margin into direct earthquake loss estimate

  • Xian, Lina;He, Zheng;Ou, Xiaoying
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.429-450
    • /
    • 2016
  • An attempt has been made to incorporate the concept of collapse safety margin into the procedures proposed in the performance-based earthquake engineering (PBEE) framework for direct earthquake loss estimation, in which the collapse probability curve obtained from incremental dynamic analysis (IDA) is mathematically characterized with the S-type fitting model. The regressive collapse probability curve is then used to identify non-collapse cases and collapse cases. With the assumed lognormal probability distribution for non-collapse damage indexes, the expected direct earthquake loss ratio is calculated from the weighted average over several damage states for non-collapse cases. Collapse safety margin is shown to be strongly related with sustained damage endurance of structures. Such endurance exhibits a strong link with expected direct earthquake loss. The results from the case study on three concrete frames indicate that increase in cross section cannot always achieve a more desirable output of collapse safety margin and less direct earthquake loss. It is a more effective way to acquire wider collapse safety margin and less direct earthquake loss through proper enhancement of reinforcement in structural components. Interestingly, total expected direct earthquake loss ratio seems to be insensitive a change in cross section. It has demonstrated a consistent correlation with collapse safety margin. The results also indicates that, if direct economic loss is seriously concerned, it is of much significance to reduce the probability of occurrence of moderate and even severe damage, as well as the probability of structural collapse.

The Study on the Complex Causation of Loss in Marine Insurance (해상보험(海上保險)에서의 복합인과관계(複合因果關係)에 관한 연구(硏究))

  • Park, Sung-Cheul
    • THE INTERNATIONAL COMMERCE & LAW REVIEW
    • /
    • v.15
    • /
    • pp.119-136
    • /
    • 2001
  • The purpose of this paper is to consider how to decide the cause of loss or damage to the transport goods when maritime accident occurs. In marine insurance, the underwriter is liable for any loss or damage proximately caused by a risk insured(MIA Art.55). So it is very important to determine the proximate cause of loss or damage to ascertain whether it is to be recoverable under the policy. But there is no definite conception or rule what is the proximate cause. It was left to the tribunal as a question of fact. In this paper, I will suggest the general rules to determine the proximate cause of loss or damage of the transport goods in marine insurance. First, in MIA 1906, there is the rule of proximate causation and it has been established the effective causation by cases since 1918. Second, in Institute Cargo Clauses(B) & (C), there are rules of considerably relaxed standards to determine the causation of loss of or damage using the "attributable to" and "caused by" basis. Third, it is noted, under the complex causation situation, there are difference basises to decide the liability of underwriters between the case of successive occurrence of single risk and the case of concurrent occurrence of several risks. Forth, in practice, it couldn't be ascertained the underwrier's liability by a definite rule and it should be fully considered the circumstances and conditions of the loss.

  • PDF

Relationship between Hard Disk Surface Damage and Data Loss (하드디스크의 표면파손과 데이터 손실과의 관계)

  • 이성창;박용식;전규찬;김대은
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.35-42
    • /
    • 2000
  • In recent years the recording density of hard disks has increased significantly largely due to the decreasing flying height. As a result of decreased flying height, the reliability issue become more critical. In this work the relationship between hard disk surface damage and data loss was investigated by using an actual hard disk drive. The purpose of this research was to identify the key factor which leads to data loss. It was shown that data loss is directly related to the physical damage of the Co-magnetic layer and there was no data loss when only carbon protective coating was damaged by the diamond tip.

  • PDF

Vibration and impedance monitoring for prestress-loss prediction in PSC girder bridges

  • Kim, Jeong-Tae;Park, Jae-Hyung;Hong, Dong-Soo;Cho, Hyun-Man;Na, Won-Bae;Yi, Jin-Hak
    • Smart Structures and Systems
    • /
    • v.5 no.1
    • /
    • pp.81-94
    • /
    • 2009
  • A vibration-impedance-based monitoring method is proposed to predict the loss of prestress forces in prestressed concrete (PSC) girder bridges. Firstly, a global damage alarming algorithm using the change in frequency responses is formulated to detect the occurrence of damage in PSC girders. Secondly, a local damage detection algorithm using the change in electro-mechanical impedance features is selected to identify the prestress-loss in tendon and anchoring members. Thirdly, a prestress-loss prediction algorithm using the change in natural frequencies is selected to estimate the extent of prestress-loss in PSC girders. Finally, the feasibility of the proposed method is experimentally evaluated on a scaled PSC girder model for which acceleration responses and electro-mechanical impedances were measured for several damage scenarios of prestress-loss.

A study on estimation of the total loss and damage ratio of maintenance monitoring sensor of subway tunnel (지하철 터널 유지관리 계측센서의 총 손망실율 산정 연구)

  • Woo, Jong-Tae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.1
    • /
    • pp.25-31
    • /
    • 2013
  • In this study, the total loss and damage ratio of maintenance monitoring which is installed and operated in the domestic and foreign tunnel structure is researched and analyzed for estimating the loss and damage ratio of maintenance monitoring sensor of subway tunnel. The total loss and damage ratio at the elapsed time of 5-6 years after installation is 14.2% in the Seoul metro line no.5,6 and 7, 14.8% in the section 1 of the Seoul metro line no.9, 13.9% in the Channel tunnel of England and all of them are close to 15%. Therefore, it is reasonable to reflect that the total loss and damage ratio of maintenance monitoring sensor of subway tunnel is estimated provisionally 15% on design, and hence the study of the loss and damage ratio with the number of elapsed years in long-term by the measurement category will be needed.

Quantitative Analysis for Termites Damage of Wooden Heritage using Ultrasonic Pulse Velocity (초음파 전파속도법을 이용한 목조 문화유산 흰개미 피해의 정량 평가)

  • Ahn, Jae-Cheol
    • Journal of architectural history
    • /
    • v.24 no.5
    • /
    • pp.41-48
    • /
    • 2015
  • Quantitative analysis of termites damage is important in terms of conservation and maintenance of wooden cultural heritage buildings, because termites makes cavities and decreases the section area of wooden structural members. The purpose of this study is to forecast the range and spread of termites damage in the wooden structural members by using ultrasonic pulse velocity method. Ultrasonic pulse velocity has been used as one of non-destructive test to analysis the internal defect by using difference velocity between medium material and cavity. This method would be effective to analysis termites damages. From the result of the ultrasonic velocity test, the loss rate of area effected by termites damage had a strong correlation with ultrasonic velocity. And it is possible to predict the loss rate of area from by termites damage by using regression equation in the case of structural member of fine tree.

Fragility curves and loss functions for RC structural components with smooth rebars

  • Cardone, Donatello
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1181-1212
    • /
    • 2016
  • Fragility and loss functions are developed to predict damage and economic losses due to earthquake loading in Reinforced Concrete (RC) structural components with smooth rebars. The attention is focused on external/internal beam-column joints and ductile/brittle weak columns, designed for gravity loads only, using low-strength concrete and plain steel reinforcing bars. First, a number of damage states are proposed and linked deterministically with commonly employed methods of repair and related activities. Results from previous experimental studies are used to develop empirical relationships between damage states and engineering demand parameters, such as interstory and column drift ratios. Probability distributions are fit to the empirical data and the associated statistical parameters are evaluated using statistical methods. Repair costs for damaged RC components are then estimated based on detailed quantity survey of a number of pre-70 RC buildings, using Italian costing manuals. Finally, loss functions are derived to predict the level of monetary losses to individual RC components as a function of the experienced response demand.

Probabilistic earthquake risk consideration of existing precast industrial buildings through loss curves

  • Ali Yesilyurt;Seyhan O. Akcan;Oguzhan Cetindemir;A. Can Zulfikar
    • Geomechanics and Engineering
    • /
    • v.37 no.6
    • /
    • pp.565-576
    • /
    • 2024
  • In this study, the earthquake risk assessment of single-story RC precast buildings in Turkey was carried out using loss curves. In this regard, Kocaeli, a seismically active city in the Marmara region, and this building class, which is preferred intensively, were considered. Quality and period parameters were defined based on structural and geometric properties. Depending on these parameters, nine main sub-classes were defined to represent the building stock in the region. First, considering the mean fragility curves and four different central damage ratio models, vulnerability curves for each sub-class were computed as a function of spectral acceleration. Then, probabilistic seismic hazard analyses were performed for stiff and soft soil conditions for different earthquake probabilities of exceedance in 50 years. In the last step, 90 loss curves were derived based on vulnerability and hazard results. Within the scope of the study, the comparative parametric evaluations for three different earthquake intensity levels showed that the structural damage ratio values for nine sub-classes changed significantly. In addition, the quality parameter was found to be more effective on a structure's damage state than the period parameter. It is evident that since loss curves allow direct loss ratio calculation for any hazard level without needing seismic hazard and damage analysis, they are considered essential tools in rapid earthquake risk estimation and mitigation initiatives.