• Title/Summary/Keyword: Loss Tangent

Search Result 188, Processing Time 0.025 seconds

A Planar Reversed-Triangle Monopole Antenna for UWB Communication (UWB 통신을 위한 평판 역삼각형 모노폴 안테나)

  • Choi, Hyung-Seok;Choi, Kyoung;Hwang, Hee-Yong
    • Journal of Industrial Technology
    • /
    • v.31 no.A
    • /
    • pp.109-112
    • /
    • 2011
  • In this paper, we proposed a planar reversed triangle monopole antenna for UWB(Ultra Wideband) communication. RF-60A substrate of 0.64 mm thickness and 6.15 relative permitivity and 0.035 mm conductor of thickness and loss tangent 0.0025 is used for implementation. We have used Ansoft $HFSS^{TM}$(High Frequency Structure Simulator) to simulate the proposed antenna. The proposed antenna showed return losses about -10 dB, nearly omni-directional radiation patterns and maximum gains are over -5 dBi at the frequency band from 3.1 GHz to 10.6 GHz for ultra wide band communication.

  • PDF

Study on the Rheological Properties of Acorn Starch(III) -Effect of sucrose on the Rheological Properties of Acorn Starch- (Acorn Starch의 유변학적 성질에 관한 연구(III) -Acorn Starch의 유변학적 성질에 미치는 Surcrose 효과를 중심으로-)

  • 김남희
    • The Korean Journal of Rheology
    • /
    • v.10 no.1
    • /
    • pp.7-13
    • /
    • 1998
  • 중량 평균 분자량이 1.22$\times$106이고 다분산도가 8.90이며 수분과 아밀로오스 함량이 각각 9.35%, 27%인 도토리 전분에 sucrose를 첨가하여 동적 유변학적 특성에 대한 온도와 농도의존성을 고찰하였다. AS(acorn starch)-sucrose 계의 점도는 전단속도가 증가하면 감 소하는 전단담화 현상을 나타내며 sucrose 농도가 증가할수록 점도가 증가하였고, Casson 식에 의해 얻어진 항복치는 sucrose 농도가 증가하면 증가하였다. 저장영률과 손실영률은 sucrose 농도가 증가하면 단일하게 증가하였고 손실 탄성률은 온도가 증가하면 감소하였다. DSC 측정자료를 zipper model에 적용시켜 본 결과 sucrose 농도가 증가할수록 zipper의 수 와 junc-tion zone의 수는 증가했으며 크기는 감소하였다. Sucrose는 전분과 수소결합을 형 성하여 용액내에서 가소제처럼 거동함을 알수있었다.

  • PDF

Dielectric-Spectroscopic and ac Conductivity Investigations on Manganese Doped Layered Na1.9Li0.1Ti3O7 Ceramics (망간이 혼입된 층상구조 Na1.9Li0.1Ti3O7 세라믹스의 유전율 ‒ 분광법과 교류 전도도 측정 연구)

  • Pal, Dharmendra;Pandey, J.L.;Shripal
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.1
    • /
    • pp.42-50
    • /
    • 2009
  • The dielectric-spectroscopic and ac conductivity studies firstly carried out on layered manganese doped Sodium Lithium Trititanates ($Na_{1.9}Li_{0.1}Ti_3O_7$). The dependence of loss tangent (Tan$\delta$), relative permittivity ($\varepsilon_r$) and ac conductivity ($\sigma_{ac}$) in temperature range 373-723K and frequency range 100Hz-1MHz studied on doped derivatives. Various conduction mechanisms are involved during temperature range of study like electronic hopping conduction in lowest temperature region, for MSLT-1 and MSLT-2. The hindered interlayer ionic conduction exists with electronic hopping conduction for MSLT-3. The associated interlayer ionic conduction exists in mid temperature region for all doped derivatives. In highest temperature region modified interlayer ionic conduction along with the polaronic conduction, exist for MSLT-1, MSLT-2, and only modified interlayer ionic conduction for MSLT-3. The loss tangent (Tan$\delta$) in manganese-doped derivatives of layered $Na_{1.9}Li_{0.1}Ti_3O_7$ ceramic may be due to contribution of electric conduction, dipole orientation, and space charge polarization. The corresponding increase in the values of relative permittivity may be due to increase in number of dipoles in the interlayer space while the corresponding decrease in the values of relative permittivity may be due to the increase in the leakage current due to the higher doping.

RHEOLOGIC STUDY ON THE VISCOELASTIC PROPERTIES OF FLOWABLE AND CONDENSABLE RESIN COMPOSITES (유동성 및 응축성 복합레진의 점탄성에 관한 유변학적 연구)

  • Lee, In-Bog;Cho, Byeong-Hoon;Son, Ho-Hyun;Kwon, Hyuk-Choon;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.3
    • /
    • pp.359-370
    • /
    • 2000
  • The purpose of this investigation was to observe the viscoelastic properties of five commercial flowable(Aeliteflo, Flow it, Revolution, Tetric flow, Compoglass flow), three conventional hybrid(Z-100, Z-250, P-60) and two condensable(Synergy compact, SureFil) resin composites. A dynamic oscillatory shear test was done to evaluate the storage shear modulus (G'), loss shear modulus(G"), loss tangent(tan ${\delta}$) and complex viscosity(${\eta}^*$) of the resin composites as a function of frequency - dynamic frequency sweep test from 0.01 to 100 rad/s at $25^{\circ}C$ - by using Advanced Rheometric Expansion System(ARES). To investigate the effect on the viscosity of resin composites of filler volume fraction, the filler weight % and volume % were measured by means of Archimedes' principle using a pyknometer. The results were as follows 1. The complex viscosity ${\eta}^*$ of flowable resins was lower than that of hybrid resins and significant differences were observed between brands. The complex viscosity ${\eta}^*$ of condensable resins was higher than that of hybrid resins. The order of complex viscosity ${\eta}^*$ at ${\omega}$=10 rad/s was as follows, Surefil, Synergy compact, P-60, Z-250, Z-100, Aeliteflo, Tetric flow, Compoglass flow, Flow it, Revolution. The relative complex viscosity of flowable resins compared to Z-100 was 0.04~0.56 but Surefil was 30.4 times higher than that of Z-100. 2. The storage shear modulus G' and the loss shear modulus G" of flowable resins were lower than those of hybrid resins but those of condensable resins were higher. The patterns of the change of loss tangent, tan ${\delta}$, of resin composites with increasing frequency were significantly different between brands. The phase angles, ${\delta}$, ranged from $30.2{\sim}78.1^{\circ}$ at ${\omega}$=10 rad/s. 3. All composite resins represent pseudoplastic nature with increasing shear rate. 4. The complex shear modulus $G^*$ and the phase angle ${\delta}$ was represented by the frequency domain phasor form, $G^*({\omega})=G^*e^{i{\delta}}=G^*{\angle}{\delta}$. The locus of frequency domain phasor plots in a complex plane was a valuable method that represent the viscoelastic properties of composite resins. 5. There was no direct linear correlationship but a weak positive relation was observed between filler volume % or weight % and the viscosity of the resin composites.

  • PDF

Viscoelastic Property Evaluation of Asphalt Cement by Ultrasonic Measurement (초음파 측정법에 의한 아스팔트 세멘트의 점탄성 특성 평가)

  • Lee, Jai-Hak
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.5
    • /
    • pp.402-411
    • /
    • 2000
  • This study investigates the method to measure the viscoelastic properties of asphalt cement, one of the viscoelastic materials, using the ultrasound. The wave speed and attenuation were measured from $-20^{\circ}C$ to $60^{\circ}C$ at the frequency of 2.25MHz. Then, the storage and loss longitudinal moduli, loss tangent storage and loss longitudinal compliances were found depending on the temperatures based on the linear viscoelastic theory. Stress relaxation, creep, and viscosity were predicted using Maxwell and Voigt-Kelvin viscoelastic models. The validity of superposition principle and shift factor were verified by comparing the present results to the data reported in the literatures.

  • PDF

A Study on the Dielectric Properties of Silicone Rubber Filled with Silica (실리카 충진된 실리콘 고무의 유전 특성에 관한 연구)

  • Lee, Sung Ill
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.11
    • /
    • pp.810-815
    • /
    • 2013
  • In this study, the capacitance and dielectric loss tangent of the silicone rubber which is combined with filler (30 phr~50 phr) have been measured on the range of 100 Hz~100 kHz and $30{\sim}170^{\circ}C$. It was found that when the frequency is 0.1 kHz~100 kHz and the silicone rubber is combined with 30 phr to 50 phr of filler, the capacitance of silicone rubber has increased by about 28.6 pF to 33 pF in 30 phr of filler, about 20 pF to 46.1 pF in 40 phr of filler and about 36.4 pF to 44 pF in 50 phr of filler. It seems that the volume of dielectric loss has gradually increased due to the temperature rise and the rotating of dipole in electric field through the electric dipole generated by the Si-O group which is induced by adding of filler, or the carbonyl group which is caused by oxidation. It seems that the dielectric dispersion in 0.1 kHz is caused by molecular motion of Siloxane group in main chain, and the dielectric dispersion in 10 kHz is caused by molecular motion of Methyl group in side chain.

Dielectric Relaxation and Electrical Conduction Properties of La2NiO4+δ Ceramics (La2NiO4+δ세라믹스의 유전이완 및 전기전도특성)

  • Jung, Woo-Hwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.7
    • /
    • pp.377-383
    • /
    • 2011
  • Thermoelectric power, dc conductivity, and the dielectric relaxation properties of $La_2NiO_{4.03}$ are reported in the temperature range of 77 K - 300 K and in a frequency range of 20 Hz - 1 MHz. Thermoelectric power was positive below 300K. The measured thermoelectric power of $La_2NiO_{4.03}$ decreased linearly with temperature. The dc conductivity showed a temperature variation consistent with the variable range hopping mechanism at low temperatures and the adiabatic polaron hopping mechanism at high temperatures. The low temperature dc conductivity mechanism in $La_2NiO_{4.03}$ was analyzed using Mott's approach. The temperature dependence of thermoelectric power and dc conductivity suggests that the charge carriers responsible for conduction are strongly localized. The relaxation mechanism has been discussed in the frame of the electric modulus and loss spectra. The scaling behavior of the modulus and loss tangent suggests that the relaxation describes the same mechanism at various temperatures. The logarithmic angular frequency dependence of the loss peak is found to obey the Arrhenius law with activation energy of ~ 0.106eV. At low temperature, variable range hopping and large dielectric relaxation behavior for $La_2NiO_{4.03}$ are consistent with the polaronic nature of the charge carriers.

Exploiting W. Ellison model for seawater communication at gigahertz frequencies based on world ocean atlas data

  • Tahir, Muhammad;Ali, Iftikhar;Yan, Piao;Jafri, Mohsin Raza;Jiang, Zexin;Di, Xiaoqiang
    • ETRI Journal
    • /
    • v.42 no.4
    • /
    • pp.575-584
    • /
    • 2020
  • Electromagnetic (EM) waves used to send signals under seawater are normally restricted to low frequencies (f) because of sudden exponential increases of attenuation (𝛼) at higher f. The mathematics of EM wave propagation in seawater demonstrate dependence on relative permeability (𝜇r), relative permittivity (𝜀r), conductivity (𝜎), and f of transmission. Estimation of 𝜀r and 𝜎 based on the W. Ellison interpolation model was performed for averaged real-time data of temperature (T) and salinity (S) from 1955 to 2012 for all oceans with 41 088 latitude/longitude points and 101 depth points up to 5500 m. Estimation of parameters such as real and imaginary parts of 𝜀r, 𝜀r', 𝜀r", 𝜎, loss tangent (tan 𝛿), propagation velocity (Vp), phase constant (𝛽), and α contributes to absorption loss (La) for seawater channels carried out by using normal distribution fit in the 3 GHz-40 GHz f range. We also estimated total path loss (LPL) in seawater for given transmission power Pt and antenna (dipole) gain. MATLAB is the simulation tool used for analysis.

Analysis of Elements for Efficiencies in Magnetically-Coupled Wireless Power Transfer System Using Metamaterial Slab (메타물질 Slab이 포함된 자계 결합 무선 전력 전송 시스템 효율 요소 분석)

  • Kim, Gunyoung;Oh, TaekKyu;Lee, Bomson
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.11
    • /
    • pp.1128-1134
    • /
    • 2014
  • In this paper, the effects of a metamaterial slab with negative permeability in a magnetically coupled wireless power transfer system (WPT) in the overall performance are analyzed quantitatively in terms of the effective quality factors of the loop resonators and coupling coefficient considering the slab losses, based on an equivalent circuit. Using the ideal metamaterial slab(lossless slab), the WPT efficiency is improved considerably by the magnetic flux focusing. However, the practical lossy slab made of RRs or SRRs limits the significant enhancement of WPT efficiency due to the relatively high losses in the slab consisting of RRs or SRRs near the resonant frequency. For the practical loop resonator, other than a point magnetic charge, using the practical lossy metamaterial slab in order to improve the transfer efficiency, the width of the slab needs to be optimized somewhat less than the half of the distance between two loop resonators. For the low-loss slab with its loss tangent of 0.001, the WPT efficiency is maximized at 93 % when the ratio of the slab width and the distance between the two resonators is approximately 0.35, compared with 53 % for the case without the slab. The efficiency in case of employing the high-low slab(loss tangent: 0.2) is maximized at 61 % when the slab ratio is 0.25.

Cure Kinetics and chemorology of silica filled DGEBA/Polyxoypropylenediamine epoxy system (무기물이 충진된 에폭시수지의 경화반응과 유변학적 거동에 관한 연구)

  • 윤은상;이기윤;김대수
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1994.11a
    • /
    • pp.125-126
    • /
    • 1994
  • The chemorheological changes and kinetics during curing reaction of an silica filled epoxy system (DGEBA with curing agent Polyxoypropylenediamine) were investigated. This study concentrates on the influence of silica on the reaction kinetics and rheological behavior of the eopxy system. The concentration of the filler was varied 0~200phr. Curing behavior of the silica filled epoxy system was measured at various heating rates with DSC. Conversion was also measured by integrating the obtained DSC curve and Kinetic parameters measured by using the nonlinear regression method. DSC experiments showed that the presence of silica was found to accelerate the progress of the curing reaction and of reduce the heat of reaction compared with that of unfilled epoxy systems . Rheological experiments were conducted on a Physica by using a disposable parallel plate fixture. Material properites were measured such as the elastic modulus(G′), the loss modulus(G"), the loss tangent(tan $\delta$), and the viscosity was at the initial stahe, and the more the silica filler was added, and the lower the gel temperature was in the epoxy system. In this study it is concluded that the curing of the silica filled epoxy system was found to be accelerated, as silica was added to the epoxy compound.

  • PDF