• Title/Summary/Keyword: Loss Rate

Search Result 5,212, Processing Time 0.031 seconds

Performance Analysis of Polymer Electrolyte Membrane Fuel Cell by AC Impedance Measurement (교류 임피던스 측정법을 이용한 고분자 전해질 연료전지의 성능특성 분석)

  • Seo, Sang-Hern;Lee, Chang-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.4
    • /
    • pp.283-290
    • /
    • 2009
  • This study focuses on the performance characteristics of polymer electrolyte membrane fuel cell (PEMFC) using the AC impedance technique. The experiment was carried out to investigate the optimal operating conditions of PEMFC such as cell temperature, flow rate, humidified temperature and back-pressure. The fuel cell performance was analyzed by DC electronic-loader with constant voltage mode and expressed by voltage-current density. Additionally, AC impedance was measured to analysis of ohmic and activation loss and expressed by Nyquist plot. The results showed that the cell performance increased with increase of cell temperature, air flow rate, humidified temperature and backpressure. Also, the activation loss decreased as the increase of cell temperature, air flow rate, humidified temperature and backpressure.

A Study on Physical Properties of Mortar Using Shrinkage Reducing Agent (수축저감제를 사용한 모르터의 물성에 관한 연구)

  • 이승한;이종석;이순환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.103-107
    • /
    • 1995
  • The intention of this study is to reduce the drying shrinkage of the cement mortar using the shrinkage reducing agent and the inorganic admixture. In this experiment the drying shrinkage strain, rate of weight loss and strength have been measured depending on age using the motar specimen. The result show that the usage of shrinkage reducing agent up to 1.5% will give an effect of approximately 30% without loss of strength, and the efficiency will increase together with the inorganic admixture. Also, as the amount of shrinkage reducing agent increases, the rate of weight loss increases. Drying shrinkage reduces at the same rate of weight loss.

  • PDF

Soil Erosion Modeling Using RUSLE and GIS on the Imha Watershed (RUSLE 모형을 이용한 임하댐 유역에서의 토양유실량 평가)

  • Kim, Hyeon-Sik;Julien, Pierre. Y.;Yum, Kyung-Taek
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.126-131
    • /
    • 2007
  • The Imha watershed is vulnerable to severe erosion due to the topographical characteristics such as mountainous steep slopes. The RUSLE model was combined with GIS techniques to analyze the mean annual erosion losses and the soil losses caused by typhoon "Maemi". The model is used to evaluate the spatial distribution of soil loss rates under different land uses. The mean annual soil loss rate and soil losses caused by typhoon "Maemi"were predicted as $3,450\;tons/km^2/year$ and $2,920\;ton/km^2/"Maemi"$, respectively. The sediment delivery ratio was determined to be about 25% from the mean annual soil loss rate and the surveyed sediment deposits in the Imha reservoir in 1997.

  • PDF

SOIL EROSION MODELING USING RUSLE AND GIS ON THE IMHA WATERSHED

  • Kim, Hyeon-Sik;Julien Pierre Y.
    • Water Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.29-41
    • /
    • 2006
  • The Imha watershed is vulnerable to severe erosion due to the topographical characteristics such as mountainous steep slopes. Sediment inflow from upland area has also deteriorated the water quality and caused negative effects on the aquatic ecosystem of the Imha reservoir. The Imha reservoir was affected by sediment-laden density currents during the typhoon 'Maemi' in 2003. The RUSLE model was combined with GIS techniques to analyze the mean annual erosion losses and the soil losses caused by typhoon 'Maemi'. The model is used to evaluate the spatial distribution of soil loss rates under different land uses. The mean annual soil loss rate and soil losses caused by typhoon 'Maemi' were predicted as 3,450 tons/km2/year and 2,920 ton/km2/'Maemi', respectively. The sediment delivery ratio was determined to be about 25% from the mean annual soil loss rate and the surveyed sediment deposits in the Imha reservoir in 1997. The trap efficiency of the Imha reservoir was calculated using the methods of Julien, Brown, Brune, and Churchill and ranges from 96% to 99%.

  • PDF

Study of Optimal Location and Compensation Rate of Thyristor-Controlled Series Capacitor Considering Multi-objective Function

  • Shin, Hee-Sang;Cho, Sung-Min;Kim, Jin-Su;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.428-435
    • /
    • 2013
  • Flexible AC Transmission System (FACTS) application study on enhancing the flexibility of AC power system has continued to make progress. A thyristor-controlled series capacitor (TCSC) is a useful FACTS device that can control the power flow by adjusting line impedances and minimize the loss of power flow and voltage drop in a transmission system by adjusting line impedances. Reduced power flow loss leads to increased loadability, low system loss, and improved stability of the power system. This study proposes the optimal location and compensation rate method for TCSCs, by considering both the power system loss and voltage drop of transmission systems. The proposed method applies a multi-objective function consisting of a minimizing function for power flow loss and voltage drop. The effectiveness of the proposed method is demonstrated using IEEE 14- and a 30-bus system.

Rate of softening and sensitivity for weakly cemented sensitive clays

  • Park, DongSoon
    • Geomechanics and Engineering
    • /
    • v.10 no.6
    • /
    • pp.827-836
    • /
    • 2016
  • The rate of softening is an important factor to determine whether the failure occurs along localized shear band or in a more diffused manner. In this paper, strength loss and softening rate effect depending on sensitivity are investigated for weakly cemented clays, for both artificially cemented high plasticity San Francisco Bay Mud and low plasticity Yolo Loam. Destructuration and softening behavior for weakly cemented sensitive clays are demonstrated and discussed through multiple vane shear tests. Artificial sensitive clays are prepared in the laboratory for physical modeling or constitutive modeling using a small amount of cement (2 to 5%) with controlled initial water content and curing period. Through test results, shear band thickness is theoretically computed and the rate of softening is represented as a newly introduced parameter, ${\omega}_{80%}$. Consequently, it is found that the softening rate increases with sensitivity for weakly cemented sensitive clays. Increased softening rate represents faster strength loss to residual state and faster minimizing of shear band thickness. Uncemented clay has very low softening rate to 80% strength drop. Also, it is found that higher brittleness index ($I_b$) relatively shows faster softening rate. The result would be beneficial to study of physical modeling for sensitive clays in that artificially constructed high sensitivity (up to $S_t=23$) clay exhibits faster strain softening, which results in localized shear band failure once it is remolded.

Determination of Optimal Unit Hydrographs and Infiltration Rate Functions at the site of the Su-Jik Bridge in the HwangGuJichen River (황구지천 수직교 지점에서의 최적 단위도 및 침투율의 결정)

  • Ahn, Taejin;Cho, Byung Doon;Lyu, Heui Jeong
    • Journal of Wetlands Research
    • /
    • v.7 no.3
    • /
    • pp.57-66
    • /
    • 2005
  • This paper is to present the determination of the optimal loss rate parameters and unit hydrographs from the observed single rainfall-runoff event using optimization model. The linear program models has been formulated to derive the optimal unit hydrographs and loss rate parameters for the site of the Su-Jik Bridge in the HwangGuJichen River; one minimizes the summation of the absolute residual between predicted and observed runoff ordinates. In the perturbation stage of parameters the trial and error method has been adopted to determine the loss rate parameters for Kostiakov's, Philip's, Horton's, and Green-Ampt's equation. The unique unit hydrograph ordinates for a given rainfall-runoff event is exclusively obtained with ${\Phi}$ index, but unit hydrograph ordinates depend upon the parameters for each loss rate equations. In this paper the single rainfall-runoff event observed from the sample watershed is considered to test the proposed method. The optimal unit hydrograph obtained by the optimization model has smaller deviations than the ones by the conventional method.

  • PDF

Efficient Estimation of Cell Loss Probabilities for ATM Switches with Input Queueing via Light Traffic Derivatives

  • Kim, Young-Beom;Jung Hur
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.56-63
    • /
    • 1997
  • Under most system assumptions, closed form solutions of performance measures for ATM switches with input queueing are not available. In this paper, we present expressions and bounds for the derivatives of cell loss probabilities with respect to the arrival rate evaluated at a zero arrival rate. These bounds are used to give an approximation by Taylor expansion, thereby providing an economical way to estimate cell loss probabilities in light traffic.

  • PDF

A TWO-YEAR STUDY OF IMPLANT RETAINED OVERDENTURES IN THE TREATMENT OF TOTALLY EDENTULOUS JAWS

  • Kwon, Ho-Beom;Kim, Eun-Ha;Lee, Seok-Hyoung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.6
    • /
    • pp.760-768
    • /
    • 2007
  • Statement of problem. Conventional denture treatment for totally edentulous patients is associated with a variety of functional and psychosocial problems. The placement of implants in the anterior region of the maxilla and mandible and the fabrication of an implant-retained overdenture might solve these problems. Purpose. This study compared the marginal bone loss around the implant and evaluated the implant survival rate and complications in patients treated with overdentures retained by implants for 2 years. Material and methods. Patients who had received implant-retained overdentures using a Dolder bar at Samsung Medical Center from January 1999 to June 2005 and had participated in the annual recall programs for two years were selected for this study. A total of 18 patients and 56 $Br{\aa}ne-mark\;system^{(R)}$ implants were used, and their data were reviewed. Evaluations of the survival rate, bone quality, marginal bone loss, and complications were performed. The data on the Dolder bar length and clip length were measured. The change in marginal bone loss and the correlation between the marginal bone loss and bar length, clip length, or bone quality were investigated. Results. Implants placed in this study showed a 100% survival rate. The average annual bone loss was 1.12mm in the first year and 0.27mm in the second year in the maxilla, and 0.58mm in the first year and 0.22mm in the second year in the mandible. The marginal bone loss in the maxilla showed no significant association with those in the mandible. (P>.05). There was no significant difference in marginal bone loss around implants between the first and second year. (P>.05) There was no statistically significant relationship (P>.05) between the marginal bone loss and bone quality, clip length, or Dolder bar length. The Dolder bar length showed a high correlation with the clip length. (P<.05) Various complications were noted. Conclusion. These results confirmed the favorable outcome for patients treated with implant-retained overdentures.

An Accurate Estimation of Channel Loss Threshold Set for Optimal FEC Code Rate Decision (최적의 FEC 부호율 결정을 위한 정확한 채널손실 한계집합 추정기법)

  • Jung, Tae-Jun;Jeong, Yo-Won;Seo, Kwang-Deok
    • Journal of Broadcast Engineering
    • /
    • v.19 no.2
    • /
    • pp.268-271
    • /
    • 2014
  • Conventional forward error correction (FEC) code rate decision schemes using analytical source coding distortion model and channel-induced distortion model are usually complex, and require the typical process of model parameter training which involves potentially high computational complexity and implementation cost. To avoid the complex modeling procedure, we propose a simple but accurate joint source-channel distortion model to estimate channel loss threshold set for optimal FEC code rate decision.