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Eificient Estimation of Cell Loss Probabilities for ATM
Switches with Input Queueing via Light Traffic Derivatives

Young-Beom Kim and Jung Hur

Abstract

Under most system assumptions, closed form solutions of performance measures for ATM switches with input queueing are not available.

In this paper, we present expressions and bounds for the derivatives of cell loss probabilities with respect to the arrival rate evaluated at

a zero arrival rate. These bounds are used to give an approximation by Taylor expansion, thereby providing an economical way to estimate

cell loss probabilities in light traffic.

I. Introduction

In implementing high--speed networks such as ATM networks,
the bottleneck lies mainly in switching as a communication
network can be viewed as consisting largely of transmission links
and switching nodes. Several candidate architectures could possibly
support high--speed packet switching. Noteworthy among them
are the various space-division switching fabrics developed in the
past decade for terrestrial ATM networks; in particular, we focus
here on non-blocking ATM switches with input buffering. Having
in mind satellite applications, we assume that the input buffers are
finite, and typically small. In that context, the key performance
measure we wish to evaluate is the cell loss probability (CLP).

To carry out this evaluation, we consider a simple discrete-time
model for a synchronous KxK non-blocking ATM switch where
the input queues are of finite size b. Cells arrive at each input
port according to a Bernoulli process of rate A; cells that find a
full queue are rejected. Output contention manifests itself through
head-of-the-line (HOL) blocking[1], and is resolved by a simple
randomized arbitration mechanism. Despite their simplicity, these
rules of operation produce a very complex queueing behavior as
input queues become correlated over time. This explains why the
performance analysis is possible only under special conditions like
infinite switch size and saturation assumptions[1]. Therefore, under
most model assumptions, closed form solutions of performance
measures of interest are not available, nor can they be expected.
Worse perhaps, when evaluating CLP, Monte-Carlo simulation
techniques turn out to be of limited use owing to their vast
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computational cost as the desired CLP in ATM networks, being
usually in the range of 10° 10 10 corresponds to rare events.

In this paper, we address the problem of evaluating in light
traffic the cell loss probability(CLP) associated with Kx X ATM
switches with input queueing (in short, IQ switches). Light traffic
here refers to the situation where the system is lightly loaded, i.e.,
the arrival rate A to the system is very small. Throughout we use
the notation that for any function fR-R, A0+) = Jlim Ax) and

ke ke
%/(OH Em—éi?ﬂx), k=1,2,..., whenever the derivatives

exist.
Let Py(A) denote the CLP associated with a KxK IQ switch

when the input queues are of finite size § and the arrival rate at

each port is 1. We show how to evaluate the light traffic

k

%
derivatives %P,,(0+) = lim P,(A) for various values of k.

-
0+ dA*
In particular, we show that %Pb(0+)=0 for k=0,1...,26—1,
and spend most of our efforts on evaluating the first two non-zero
derivatives. These formulae make use of the regenerative structure
of the underlying Markov chain associated with the queueing
model.

We then propose to approximate the CLP P,( A), at least for
small values of the amrival rate A, by a Taylor series expansion

‘of P,(A) near the origin, which here takes the form

26 26+1
PN = gy A% 53 PUO+)+ gy A% -G PO+, 220.(D)

This approximation works well for small values of A where the
CLP is expected to be very small, a situation often handled by
variance reduction techniques such as importdnce sampling. The
method proposed here thus provides a numerical alternative to
these techniques in light traffic.
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This paper is organized as follows: In next section, we provide
the formulation of the model under consideration. Section 3 is
devoted to establishing a suitable representation for the CLP using
the notation given in Section 2; specifically we represent the CLP
by numerator and denominator functions (in terms of the input
rate A1), which are defined on a regeneration cycle of the system
process. In Section 4, we provide some useful definitions and
formulate the numerator and denominator functions in terms of
sample paths of underlying system rvs. Section 5 is devoted to
investigating several properties associated with numerator and
denominator functions as well as to establishing a relationship
between the light traffic derivatives of the numerator function and
those of CLP. In Sections 6-7, we seek general solutions for the
derivatives of CLP of order 2b and 2b+1 evaluated near zero. We
close this paper by experimenting our result with a 20x20 IQ
switch.

II. The Model

The switching fabric of interest here is characterized by the
number K of input ports, the number K of output ports, and the
common buffer size b, the positive integers K and b are held
fixed throughout the discussion.

The switch operates in a synchronous mode according to the
following scenario: Time is divided into consecutive slots of equal
duration; the length of a slot coincides with the transport time of
a cell across the switching fabric. Each input port is equipped
with a buffer which can contain at most b cells. At the beginning
of each time slot, the switch controller mediates potential output
contentions by randomly selecting one HOL cell amongst the
HOL cells which have the same output address. The HOL cells
selected for transmission are then removed from their buffer and
start being transmitted across the fabric; this transmission is
completed by the end of the time slot. In processing newly
arriving cells, there could exist two transmission strategies, namely
“gated” and “cut-through” strategies. With the gated transmission
strategy, at the same time that transmission starts, new cells
which arrive into the system during a time slot are enqueued by
the end of the slot (if buffer space is available). With the cut-
through strategy, if an input queue is empty at the beginning of a
time slot, cells arriving at that queue during the time slot are
eligible for possible transmission during the time slot. These steps
are repeated from slot to slot. In this paper, we only consider the
gated strategy- the results for the cut-through strategy can be
similarly obtained.

In order to provide a precise model description, we begin with 3K
mutually independent collections of rvs, namely {o%.,, ¢=0.,1,..},
{841, t=0.1...}, and {gh.,, t=0,1,..}, £#=1,...K. The following
assumptions (Al)-(A3) are enforced during the discussion:

(A1) For each k=1,.. K, the tvs {o*.,, t=0,1,..} are iid. rvs

Anwak  Input Buffers Crossbar Switch Fabric

Acell 0O Cross state [0 Barstate

Fig. 1. Operational Diagram for ATM switches with Input Queueing.

with
Hatv=1]=1— P[d=0]=4, t=0,1,..;

(A2) For each i=1,.. K, the tvs {g4,,, t=0,1,...} are iid. rvs
which are uniformly distributed over the set {1,.. K}, ie.,

= t]l="%, £=1_ K t=0.1.

(A3) For each k=1,... K, the rvs {u%.,, t=0,1,..} are iid. rvs
which are uniformly distributed over the unit interval (0, 1).

These quantities will shortly be given an interpretation in the
context of the input queueing system described earlier.

Fix #=1,...K and ¢=0,1,... Let Q! and V* respectively
denote the number of cells present in the 4” input queue and the
destination of the HOL cell in that queue at the beginning of time
slot [¢ t+1); by convention Vi=( if Qf=0. We write @Q,=
(Q,....@%5 and V,=(V}, ..., V). As will become apparent shortly,
it is appropriate to view the pair X,=( V,, Q) as the state of
the system at the beginning of time slot [¢ ¢+1).

Contention resolution : For each k=1, ..., K, we denote by D%,
the rv indicating the departure of HOL cell from the £“ input
buffer during the time slot [ ¢+1). In other words, the v D%,
indicates whether the HOL cell has been selected for transmission
as the result of the contention resolution at the beginning of the
slot [¢ ¢+1). Let G4,, denote the set of input ports whose HOL
cell has destination address ell at the beginning of the slot .
[ t+1). According to transmission strategy adopted, G;., can be

defined as follows:

poo_ | {kS(1, K Q=0), =0
Gln {
(ke{l,.. . K}: Vi= 2}, £=1,..K.

Next, we define the G4, -valued rv 0%, by

Ofy=argmax{i€G{: i), £2=1,...K @
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with a lexicographic tie-breaker; we use the convention
0% =0 if GI,, is empty. If |G%,|>0, we note that

PO =/lF]=|G'| ", jeGly 3

where F=o{ a1, B+, #,m, s=0,1,...,t—1}. In other words,
as the rv 07, selects an index in G*,, at random, it can be
used to determine the input port (with index in G9,,), whose
HOL cell will be transmitted to output ¢ during the time slot
[£++1). The binary rv D*,, is then given by

K
D= 2 1[0Li=4. k=1,.K @

Arrivals and blocking : According to the scenario outlined earlier,
there are now @Qf—D*,, cells in the buffer at the #“ input port
after contention has been resolved. New cells possibly arrive at
the k* input port with o*,, cell amiving in slot [, ¢+1). An
arriving cell is accepted into the buffer and put at the end of the
line bonly if it finds the %" input queue to be non-full, ie., if
QF— D%, < b, otherwise the cell is blocked and rejected. In short,
blocking occurs at input port % during slot [¢ ¢+1) if a cell
arriving during that time slot finds that

Q—D'yy=b, ie., Q=b and D', =0.

Therefore, at the end of the slot [¢ ¢+1), there remain Q*—D*,,
+ 1[Qf-D*,,<b]at,, cells in the %% input queue, and with

Qf=0, we have
QkH»I:'Qlk_D‘;+l+ak1+ll[Qf_D‘;+1<.b], t=0,1,.... 5

Addressing : The destination address of each ﬁewly arriving cell
is assigned randomly and uniformly over the set {1,...,K}; this
assignment is performed independently over time across input
ports, and independently of the generation of cell arrivals. Hence,
there is no loss of generality in assuming that each cell declares
its destination address immediately upon reaching the HOL and
that it keeps its address until it begins transmission across the
switching fabric. The destination of a cell newly reaching the
HOL of the %" input port is encoded in the rv g%,,. With

V=0, the following recursion

Via = (=D )(1[@F=0]ak Bhn +1[ Q0] VD)
+D4(1[QF=1]et +1[ @D 1])8%1, t=0.1,...

holds.
III. Cell Loss Probabilities

In this section, we establish some suitable expressions for CLP;

of special interest is the formulation of CLP in terms of input
rate A as the purpose of this section is to estimate the deriva-
tives of CLP with respect to A in light traffic regime.

Let P,(4) denote the CLP associated with a KxK IQ switch
when the input queues are of finite size b and the arrival rate at
each port is A. Throughout the discussion we fix. 5=1,2,.... We
denote by P;(2) the probability that the n™* cell arriving at the

first input port will be blocked; this quantity is simply
Pi()=FQ,=b], n=12,..

with ¢, representing the left boundary of the time slot during
which the n" arriving cell falls in.

The steady-state probability that an arbitrary cell arriving at the
first input port will be blocked is given by

P2 = lim P[Q, =]
= AQ'=10l

where in the last steb we have used BASTA. Standard regen-
erative arguments yield the steady-state measure P,(1) as a ratio

"~ of two expected values, namely

E[ ;T;;1[Q}=b]| éo=o]

Pid= B4 Q= 0]

with the first passage time r to the empty state O given by

t = inf 5o{t Q= 0).

If @Qy=0, then 7 can be interpreted as the length of a regen-

eration cycle. The two quantities in (3.1) are functions of input

rate A; for the sake of convenience we denote by @®(A) and ¥
(A), respectively, the numerator and denominator in the expres-
sion (3.1), respectively, so that (3.1) is now rewritten as

)] .
The estimation of CLP is now equivalent to that of @( 1) and ¥
(). '

IV. Formulation of @(A) and ¥(A)

In this section, we provide some needed definitions and
formulate @(A) and ¥(A) in terms of sample paths of the
underlying system rvs.

As the system is driven by mutually independent rvs { a,,,.

Bui, #i, t=0,1,..}, thervs { X, +=0,1,...} Tepresenting the
system states are uniquely determined by the rvs { a4,

B, #41, t=0,1,...}. To facilitate the presentation, we define
the space M by
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M ={0,1}<{1,...K}*x (0.1, ....K}%, )

and throughout we use the convention
se M. We

s=(s"s*s%, where s’=(s™!,...,s"%), »=1,2,3,

define M-valued rvs  £,,,, t=0,1,..., by

Em=( a1, B, On1), t=0,1,..,

For each :=1,2,.., given the rvs { £,,..., &,

o M—{0, ..., 0% M —{0.1,..,

), there exist two

functions and oy, K)¥ such that

Q= o6/ &, ... E&)and Vi= 7( & .., £).

Let £ denote the random vector consisting of rvs { a4,

B, Oy, =0, ...,
For each »=1,2,...

r—1} within a cycle, ie., & =( & .., &)
, we denote by S, the set of all possible
realizations of the random vector & with cycle length n, ie.,

sweM a(s ...,

S,,-z—{ SE(SL..., S/)*O. t=

For each n=1,2, ..., the set S, is finite, and the set s= QIS" now

represents the collection of all possible sample paths. For any

sample path s in S, we denote by ¢(s) the cycle length associ-
ated with s, and by a(s) the total number of cells fed to the

switch, pertaining to s, i.e.,

e K
a(s) = > st seS.

=1 k=1

a

Under the independence assumptions enforced on the arrival
JK; t=0,1, ...}, the probability P &= s]
that a cycle is realized along the sample path s (in S) can be
expressed by

processes {a%,,, k=1, ...

A 5=3s] = P &=s,t=1,..,2(9)]

C( S)/I n(s)(l _A) (K2 (s)—als)

It

where we have set

Le(9) a=s, t=1,...,£(9)].

o(s) = P[( B, 0)=(sis).t=1..

Defining a function ¢ : S—N by

#(s)-1

#(s) = ol s)=15], seS

=0

the measures @(2) and ¥(A) now can be rewritten as .
oA = ésp[ F=sl¢(s) ®
quﬁ( $)e( )AL —a) K=t

I

and

1,..,n—1, and o,(s)=0}.

Il

Wy = Z M 5=5s]2(s) )

ZS[(S)C( S)/{ a(S)(l—/l) (Kl(s)—a(s))‘

Finally, for future use we define

T,={se Sals)=n}, ==0,1,...

V. Light Traffic Derivatives

We first show that the first (2b-1) light traffic derivatives of
CLP are all zero and that in view of (Il1.2) the first two non-zero
light traffic derivatives are equal to the corresponding derivatives
of the numerator @(2), i.e.,

4% p0+)=-L0 0(0+) and

d/12 1Pb(0+)— 1 @(0+)

a®
d/l 2 e d/l oYY

We then proceed to evaluate the (2b)" and (2b+ 1™ derivatives of
o(A).

We begin with a preliminary lemma: This lemma shows that in
order to make the first queue full at least once during a
#(-)>0, at least 2b cells must be
generated during the cycle and the cycle length should be no
shorter than 2b. Let S, denote the set of all sample paths in §

regeneration cycle, ie,

along which at least once the first queue becomes full, namely

Sy={seS: ¢(s)>0}.

Lemma 1 :

For any sequence sS4, we have
£(5)=26 and a(s)=2b &)
and furthermore,
#(s)=0and £(s)=2b, s€ Sx(Ts. . 10)

Proof : Consider a sample path s<S,. First note that each time
slot at most one cell is fed to each input port and at most one
cell can be transmitted from each queue. As a result, starting
from an empty system, at least b time slots are required until the
first queue becomes full. Similarly, once the first queue is full, at
least b time slots must elapse for the system to become empty.
Therefore, we have 2 (s)>2b.

For any sample path seS,, #(s)>0 implies that at least b
cells out of a(s) should be fed to the first input queue. In order
to keep these b cells in the first queue, each time slot there must
always exist at least one cell residing in the other queues, playing
the role of blocking the HOL cell in the first queue, and we can

conclude that se€S, such that

a(s)=2b, it is plain that ¢(s)=1 and ¢ (s)=2b 0

a(s)=2b. Finally, for any
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Lemma 2 : For 5=1,2,.., we have
k
) T;‘f/l;fp(o+)=o, k=1,..,2b—1;

¢
@ Lro0+H) = @ T s
$€8,NTy
@) Loy 00+)= @D | B LMK B o)

Proof : By virtue of Lemma 1, for each £=1,2,..., we have

fl
Ms

%wu) | Sl (/1"(1 A)""” ") 1y

7,4
B oo B D go-ores

3
il

il
Ms

U

n=2h

and it is now straightforward to check that Claim 1-Claim 2 hold.
For r=2b+1, (11) yields

%@(b+)= - EZT c( )P( sH2b+1)(2B)1 (K2 (s)—2b) +
EZT: o $)p( )(2b+1)!,

251

and Claim 3 then follows by making use of (10). 1

Lemma 3 : For »=1,2,.., we have
(1) wo+)=1;

(2) -4 wo+)=o0.

Proof : (Claim 1) Claim 1 immediately follows from the‘ fact that
wWo+)= ZT 2(s)c(s) and that ¢ (s)=1 for any se 7.

(Claim 2) Because

iw'(/l) — Zsl(s)c(s)a(s)/l”(‘)"(l—/l)’“(‘)_”(‘)
- Zsl(s)C(S)(Kl(é)—a(s))ﬁ”‘"(l*/l) (o= =n,

we obtain
L d0+)= T £(de(9)~ T_Kels).
. seT, seT,y
Hence, upon using the fact ZT 2(s)c(s)= 21 Ke(s)=K, the
desired result readily follows. O]

l5rom Lemmas 2-3, we have
Proposition :1 : For »=1,2,..,

X _
(1) —;—;P,(0+)=O, k=0.1,....2b—1;
2 dﬂ" Py0+)= dAzb o0 +);

(3) %P"“’*):W 00 +).

Proof : Because for #=1,2,...,

—:,/%Pb(")= ,.Z:O(f)_‘—’w('\) dAk—'( W'(IA) )

by making use of Lemma 5.2 (Claim 1) and Lemma 5.3 (Claim
1), we readily get Claim 1 and Claim 2, respectively. Finally, for
k=2b+1, we get

25

(Zzbﬂ Py(0+) =

(2b+1)( ,,(D(A))(% %))

d2 +1
( PTUA @(A) W(/I)
and Claim 3 follows upon making use of Claim 2 of Lemma 3.

VI. Calculation of the First Non-zero
Derivatives

In this and the next sections, we evaluate the @v™
(26+1) * derivatives of CLP, which by Lemma 2 and Proposition

1 is equivalent to evaluating 3 s and s?‘_(,1 ) (s)d
» s€ T

seS.nT ol

In this section, we focus on the evaluation of the quémity
> «s); the calculation of >

5&€85,NT sy se€S NT oy

c( s)¢( s) is discussed in

the next section. For the sake of convenience, throughout we
assume that each cell is assigned its destination upon arrival, and
keeps the address until it departs the switch; this assumption is
equivalent to that providedrin Section 2.

As should become clear in this section, for large values of b, it
is not easy to find closed-form solutions for these two quantities:
In order to cope with this difficulty, we provide upper bounds on
these non-zero derivatives; these bounds turn out to be very tight -
when K is much bigger than b. Throughout we assume K> b

Set :

b r N
AE{(x,_...,x,,)E(O,l,...,b)b:\glx,=b, 3 5~ 720, r=1,...,b}.

Proposition 1 : For each 5=1,2,..., we have

4

v 2 x,—t+1
i 26)! L K—1\_ &0
gepon= Gt 3 A 1
="

Proof : We first establish- a set of constraints that each element
of S4N T, should satisfy. Consider a sample path s in the set
S#N Ty Given s, the system state at the beginning of time slot
[t ¢t+1) is given by

((olstisd, 7i(syns)), t=1,..,0—1

with the convention ¢,(s;.....,s)= 7/(s, ...,s)=0 if #=0. During
the first b time slots, of the 2b cells involved in s, b cells should
be assigned to the first input port (i.e., one cell per each time

slot) while the remaining & cells to the other input ports, ie.,



JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL 2, NO. 6, 1997 61

S[+1 = 1, t=0,‘..,b—1; (13)

My

:M
1

o

In order for the first queue to become full through b time slots,
no cell fed to the first queue should be transmitted and thus at
least one cell should be present in the other queues, blocking the
HOL cell in the first queue (we call the HOL cell in the first
queue, the tagged cell). Therefore, the sample path s satisfies

‘f] 6/ (s1....50+ i} $1400, t=0,....0-1, 14)
=2 =2

and because all the cells arriving to input ports 2,...,K (these
cells are termed blocking cells) contend with the tagged cell for
the same output at least once, the blocking cells should have the
same address as the tagged cell, ie, for ¢=0,..,6—1 and
k=2, ...K,

H (s sd>0) 751 sd + 1 6 Gty a5 =0, 5150]s T4 = s71.(15)

Furthermore, one of the blocking cells must win the first b
contentions with the tagged cell, and the sample path {bold s}
also satisfies

s5T L, 1=0,.., 01, (16)
while
si =0, kEsZ!, t=0,..,b—1.

At the end of each time slot, of the first b time slots, exactly one
cell, chosen among the non-empty input queues 2,...K, departs

the switch. Therefore, we have

K & K ow B
Eza",ﬂ(s,,....s,ﬂ)— Eza’,'(sl,....s,)+ Ezs,ﬂ 1, t=0,..,b—1
and thus
Ko, SE L,
Ezm(s,,...,s,)= igo EZS,':H—L t=1,...,b. (17)

By combining (13), (14) and (17), we obtain the constraint

] K

1—
Z= *-p20, t=1,...,

r0=2

K
b=1with £ 2 s}t = (18)

Fix ¢=0,..,b—1. According to the constraints (15)-(17), we
define the sets D,D,,,’, and D, as follows:

D={ x=( {0, 1} 2i=1, t=1 = 3 ) Al
—{ x=(xy, ..., % X ( x, k=2x/,) ]
given 6,(s1,....s), 7:(s1,...,s), and siy,

Do={yell, ...k} y*=sP" if s;:4>0, k=2,..,K); and given

6,(s1....,80>  7:(s1 0,80 sY1, and 51+1,

D ={ 2e(0,1, ¢ z"“¢1}'
25
We are now ready to compute ﬁ P,(0+) as

W Py0+)

@ = P[(B, 0)=(sL. N, 1=1,....b61 a=s}, t=1,...8]
(Zb)' 2 P[ ﬁ/+1—$/+1]

e Dt 0 g, ED -
(a, B, 0)=s,r=1,...¢t

(ap, ﬂt+1)=(5l1+1'$2:+1)

s

x 2 . [0f+1=51+1
€D

and developing this equation further, we get

-1

PO+ = (2B z)mnn{{?K"# x,3 (;:1[a'(s1 s+ 0] +1)
SE g H{ gzl[d‘(sl. Ls)+s k0]
S s, s +sk0 41 |

=@y = K
(s} sheD

K K K
Because kzﬂ:zl[of(s,,....s,)+s§;‘,>o]s 2,001, s)+ 2 st 120,81,

we have
» 1Lk
J* -8 E e ‘22(0*(51 s S S15)
Ly P+ < @ot B K FEUIL R
(st sD2D '(Zz(d,(s, sy tshE+D
X
xS shh—t

26)1 g
K’ (L. shent=0

r=0 k=2

TT_'——

where in the last step, we have used (17) and the fact
:Z;}; ézs};"’l=b. The desired result (12) is now immediate by

incorporating the set A into the last equation. |
It is worth pointing out that when K»b, the size of the set

K
{ s€SxNT2 F 1[0‘ ($1, e s,)+s,+1>0]< Ezdf(sl LSt ; S}fI}
is relatively very small compared to that of the set
K K K
{ s€S,NT o E,zl[of(sl,...,s,) +s}'+"1>0]= Ezo'f(sl,...,s,)+ Ezs}fl}

; indeed the upper bound is tight enough as should be clear from
Fig. 2. .

V. Calculation of the Second Non-zero
Derivatives

The evaluation of N

$€8,NToy

o s)¢( s) is more complicated but

similar to that of > (s). While in the previous section, we

s€SNTy

needed to consider only one case where b cells (resp. b cells) are
fed to the first queue (resp. input ports 2,...,K) during the first b
time slots and all HOL cells have the same address, in this
section several cases arise in assigning (2b+1) cells to K input
ports as well as their destination addresses; the set S, T4, can
S; described below. For

any s€SxNTapi, let 7Ts) denote the number of time slots

be partitioned into the seven sets Sj...,

required until the first queue becomes full for the first time.

(S}) During the first b time slots, (&,5+1) cells are fed to the
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Fig. 2. Comparison of Exact Values and Upper Bounds(12) for
25" derivatives in IQ Switches with b=4.

first input port and the other ports, resf)ectively. The addresses of
the blocking cells are the same as that of the tagged cell, and

7(s)=1b

(S;) During the first b time slots, (b, 5+1) cells are fed to the
first input port and the other ports, respectively. All the addresses
of the blocking cells are the same as that of the tagged cell, and
7(s)=b+1;

(S3) During the first b time slots, (b, b+1) cells are fed to the
first input port and the other ports, respectively. All the addresses
of the blocking cells are the same as that of the tagged cell
except only one of the (4+1) blocking cells, and 77s)= 5

(S1) During the first b time slots, (4, ) cells are fed to the first
input port and the other ports, respectively, and one more cell
arrives to the first port in time slot [5, 5+1). All the addresses of
the blocking cells are the same as that of the tagged cell, and
T(9=b

( S;) During the first b time slots, (b, 5) cells are fed to the first
input port and the other ports, respectively, and one more cell
arrives to the first port in time slot [b, b+1). The addresses of
blockirig cells are the same as that of the tagged cell. One of the
first b cells in the first queue wins the contention, and
7Us)=b+1;

(Sg) During the first b time slots, (&, ») cells are allocated to the
first port and the other ports, respectively. The b cells in the
queues 2,..,K, have the same addresses as that of the tagged
cell, and 77{s)=5 One more cell arrives into one of the input
ports, 1,..,K, during one of the time slots [b b+1),
t=»b+1,...,26—1;

(S;) During the first b time slots, (b, 8) cells are allocated to the
first input port and the other ports, respectively. The b cells in
the queues 2,...,K, have the same addresses as that of the tagged
cell, and 77{s)=» One more cell arrives into one of the input
ports, 2,..,K, during the time slot [5, 5+1) and its address is
different from that of the tagged cell.

We define the sets A, k=1,...,b+1, B,,, and C,,, by

I

k ! :
A= {5200 8% Bx=k Zxmr20, 1=1 b k=1, 041

b+1 !
By, = {xe{o_l,m,b) a2, 3 x= b+, X120, t=1...,b+1];
b i,
Con = {22001, 8% Zxi=bH1, Tximr20, t=1,....8).

Setting

P,= X2 d9)¢(s), n=1,..7,

seS;

we have >
SNT

o $)g( s)= 27::1 P,. The calculation of P, ..., P;
proceeds similarly as was done in Section 6 and the details are
omitted for the sake of brevity. By Claim 3 of Lemma V.2, we
have '

J4?

b+1
i o0+)

se€5.M Ty

(2b+1)!(:_ZT=IIP;—2b(K—1) b3 c(s))'

[

(2b+1)!( P+ Pyt P5+(~2%}i—(1;’+1)) IE;SEW c(s)),

where setting C,= SZ;\T o(s),k=1,..,b, the parameters P,

P, and P; are given by

poa ML o, 3 5 k-1 EET
! 2K T 4 xEC.q"l( * ) S xim 142
5=

P 5 (K—1)ﬁ‘(K—1) ,z‘:le_'+l+$_—L ﬁ‘(K—I)M.
2 KT B X f=a\ x4 Z;x.v—t+2 K esd,, =1\ X i:‘Xi,_t+2
and

- i~ 1
P~ 21 5 k-1 P2 K-1 1
STORIKFT 22 x ; Xj
€A, 2ox—tH2 Y ﬁlx,—-z+2

1
2 xi—t+2

VA. An Example

We have applied our result to the estimation of CLP in IQ
switches with K=20 and »=23(See Fig. 3). The simulation results
were obtained using the variance reduction technique called
importance sampling in order to speed up the simulation because
the CLP in this light traffic regime is very small and a plain
Monte Carlo simulation takes a great amount of time.
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Fig. 3. Comparisons between Light Traffic Approximation(1.1)
and Monte Carlo Simulation Results.

IX. Conclusions

In this paper, we have: derived expressions for the non-zero
derivatives of CLP with respect to the arrival rate evaluated in
light traffic. These light traffic derivatives obtained are incor-
porated into an approximation of the CLP via a Taylor expansion,
thereby providing an economical way to get a quick evaluation of
CLP in light traffic. This result may be further extended by
interpolating heavy and medium traffic values to yield a global
configuration of input rate versus CLP.
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