• 제목/요약/키워드: Loss Factor

검색결과 2,758건 처리시간 0.04초

진동감쇠특성 시험법 비교 (Comparison of Test Methods for Vibration Damping Properties)

  • 신수현;정성수;이두희;이용봉
    • 한국소음진동공학회논문집
    • /
    • 제14권9호
    • /
    • pp.852-860
    • /
    • 2004
  • There are many standard methods for measuring vibration damping properties of the beam type material. Among them, three standards ASTM E 756, ISO 6721 and JIS G 0602, are compared. Loss factor and Young's modulus of the steel beam are evaluated by using five different methods and their results are compared. Logarithmic decay method and half-power bandwidth method are used to calculate the loss factor. It was observed that Young’s modulus is agree well, but loss factors are different from test to test. So the same test method must be applied to measure damping properties.

경쟁적 전력시장에서 한계손실계수 적용시 기준모선 선정에 대한 연구 (A Study on the Selection of Slack Bus at Application of Marginal Loss-Factor in a Competitive Electricity Market)

  • 김상훈;이광호
    • 전기학회논문지
    • /
    • 제58권2호
    • /
    • pp.264-269
    • /
    • 2009
  • Marginal Loss Factor(MLF) is represented as the sensitivity of transmission loss, which is computed from the change of the generation at slack bus by the change of the load at the arbitrary bus. The MLF dependent on the selection of slack bus is one of the key factors affecting nodal pricing, Genco's profits, social welfare(SW) and Nash Equilibrium in a competitive electricity market. This paper addresses the methodology of slack bus selection by using Cournot model of Cost Based Pool market. Numerical results from sample cases show that the slack bus of MLF of the highest average is beneficial from the view points of SW.

Hybrid Type Vibration Power Flow Analysis Method Using SEA Parameters

  • 박영호;홍석윤
    • 한국음향학회지
    • /
    • 제21권4호
    • /
    • pp.164-164
    • /
    • 2002
  • This paper proposes a hybrid method for vibration analysis in the medium to high frequency ranges using Power Flow Analysis (PFA) algorithm and Statistical Energy Analysis (SEA) coupling concepts. The main part of the developed method is the application of coupling loss factor (CLF) suggested in SEA to the power transmission, reflection coefficients in PI' A boundary conditions. The developed hybrid method shows very promising results with regard to the applications for the various damping loss factors in wide frequency ranges. And also this paper presents the applied results of Power Flow Finite Element Method (PFFEM) by forming the new joint element matrix with CLF to analyze the various plate structures in shape. The analytical results of automobile, complex plate structures show good agreement with those of PFFEM using the PFA coefficients.

Soft Switching방식 고역률 강압형 컨버터 (Soft Switching High Power Factor Buck Converter)

  • 구헌회;조기연
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1997년도 전력전자학술대회 논문집
    • /
    • pp.243-246
    • /
    • 1997
  • In this paper, soft switching high power factor buck converter is proposed. This converter is composed of diode rectifier, a input capacitor can be small enough to filter input capacitor can be small enough to filter input current, buck converter with loss less snubber circuit. Converter is operated in discontinous conduction mode, turn of of the switching device is a zero current switching(ZCS) and high power factor input is obtained. In addition, zero voltage switching(ZVS) at turn of is achieved and switching loss is reduced using loss less snubber circuit. The capacitor used in the snubber circuit raised output voltage. Therefore, proposed converter has higher output voltage and higher efficiency than conventional buck type converter at same duty factor in discontious conduction mode operation.

  • PDF

부하패턴을 이용한 손실계수 산정 방법 (The Method of Calculating the Distribution Loss Factor using the Load Current Pattern)

  • 최성훈;김준일;박용업
    • 전기학회논문지
    • /
    • 제59권1호
    • /
    • pp.40-45
    • /
    • 2010
  • In order to establish the electric distribution system economically and operate efficiently, it becomes important to calculate energy losses of the system more accurately. This importance is not only related for the engineering of utilities' power network but also for the consumers' electric system. The Distribution Loss Factor (DLF) is the fundamental element of calculating the energy losses occurred through the electric system including the electric lines and equipments. Up to now, the DLF is calculated by empirical formulas using the correlation between the DLF itself and Load Factor. However, these methods have some limitations to reflect the various characteristics of the system and the load. In this regard, the novel method proposed here is developed to yield more accurate result of DLF which actively interacting with the characteristics and load patterns of the system. The improvement of accuracy is very significant according to the results of verification presented at the end of this paper.

점탄성 물질의 온도와 주파수 의존성을 고려한 구속형 제진보의 최대 손실계수 설계 (Optimal Layout Design of Frequency- and Temperature-Dependent Viscoelastic Materials for Maximum Loss Factor of Constrained-Layer Damping Beam)

  • 이두호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.1023-1026
    • /
    • 2007
  • Optimal damping layout of the constrained viscoelastic damping layer on beam is identified with temperatures by using a gradient-based numerical search algorithm. An optimal design problem is defined in order to determine the constrained damping layer configuration. A finite element formulation is introduced to model the constrained damping layer beam. The four-parameter fractional derivative model and the Arrhenius shift factor are used to describe dynamic characteristics of viscoelastic material with respect to frequency and temperature. Frequency-dependent complex-valued eigenvalue problems are solved by using a simple resubstitution algorithm in order to obtain the loss factor of each mode and responses of the structure. The results of the numerical example show that the proposed method can reduce frequency responses of beam at peaks only by reconfiguring the layout of constrained damping layer within a limited weight constraint.

  • PDF

원형단면 노즐의 급확대 축소부를 통한 유동손실에 대한 연구 (A Study on the Flow Loss for Sudden Expansion and Contraction Part of Circular Pipe Nozzle)

  • 고영하
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권6호
    • /
    • pp.89-95
    • /
    • 2000
  • To obtain an exact flow loss in piping systems is very important in the face of efficiency anticipation and work control of plant. The object of this study is to get the flow loss through the experiment for sudden expansion and contraction part of circular pipe nozzle. The experiment in this study is performed after getting the flow loss factor for sudden expansion and contraction through preliminary experiments. It is confirmed that the results of this study agreed with the approximated equation of Ikeda and Matsuo. It is proved that flow loss factor ${\zeta}_3$for sudden expansion and contraction part of circular pipe is dependent on $L/D_1$in these experimental conditions.

  • PDF

USLExls를 이용한 복토법에 따른 필지 단위 토양유실량 분석 (Development of USLExls and its Application for the Analysis of the Impact of Soil-Filling Work on Soil Loss)

  • 김소래;유찬;이상환;지원현;장민원
    • 한국농공학회논문집
    • /
    • 제59권6호
    • /
    • pp.109-125
    • /
    • 2017
  • This study aimed to develop a parcel-unit soil loss estimation tool embedded in Excel worksheet, USLExls, required for the design of contaminated farmland restoration project and to analyze the impact of the project carried out soil-filling work on soil loss. USLE method was adopted for the estimation of average annual soil loss in a parcel unit, and each erosivity factor in the USLE equation was defined through the review of previous studies. USLExls was implemented to allow an engineer to try out different combinations just by selecting one among the popular formulas by each factor at a combo box and to simply update parameters by using look-up tables. This study applied it to the estimation of soil loss before and after soil-filling work at Dong-a project area. The average annual soil loss after the project increased by about 2.4 times than before on average, and about 60 % of 291 parcels shifted to worse classes under the classification criteria proposed by Kwak (2005). Although average farmland steepness was lower thanks to land grading work, the soil loss increased because the inappropriate texture of the cover soil induced the soil erosion factor K to increase from 0.33 before to 0.78 after the soil-filling work. The results showed that the selection of cover soil for soil-filling work should be carefully considered in terms soil loss control and the estimation of change in soil loss should be mandatory in planning a contaminated farmland restoration project.

배전용 변압기의 합리적인 사양과 그 설계법 (The optimum specifications and design of distributive transformers)

  • 이승원
    • 전기의세계
    • /
    • 제14권4호
    • /
    • pp.8-17
    • /
    • 1965
  • Firstly, this study has analyzed the following factors affecting the optimum specifications and design of distributive transformers: 1. Facilities installation cost per unit power output. 2. Facilities operating & maintenance cost per unit power output. 3. Production cost per unit power output. 4. Load factor. 5. Loss factor. Secondly, it has clarified the relations between the following factors and the specifications and design of distributive transformers; 1. No-load loss., 2. Load loss., 3. Voltage regulation., 4. Exciting current. Finally, it has determined the method of the most economic design for the transformers using the above factors and relations, and, for optimum the illustrative purpose, suggested their optimum specifications, way of evaluation, and merits by means of typical example.

  • PDF

USLE모형과 대체법을 이용한 밭농사의 토양유실 저감기능 계량화 평가 (Evaluation on national environmental functionality of farming on soil loss using the USLE and replacement cost method)

  • 현병근;김무성;엄기철;강기경;윤홍배;서명철;성기석
    • 한국토양비료학회지
    • /
    • 제35권6호
    • /
    • pp.361-371
    • /
    • 2002
  • 밭농사에 다원적기능중의 하나로 알려져 있는 토양유실저감기능에 대하여 기존에 보고된 결과를 수정 보완하였으며, 그 얻은 결과를 요약하면 다음과 같다. 1. 우리나라 밭농사의 토양유실량을 USLE모형을 이용하여 계산하였으며, 각 인자별 값은 다음과 같다. 강우인자(R)값은 429.4, 토양침식성인자(K)값은 0.15, 지형인자(LS)값은 1.72, 작물인자(C)값은 0.275, 토양관리인자(P)값은 0.856이었다. 2. USLE모형에 의한 우리나라 밭농사의 토양유실량은 ha당 연간 26.1톤이었으나, 나지토양의 경우에는 ha당 연간 110.8톤으로서 밭농사에 의한 토양유실량은 나지에 비하여 23% 수준이었으며, 연간 밭농사는 나지토양에 비하여 84.7톤의 토양유실량 저감기능이 있었다. 이것을 밭면적전체로는 연간 62,650천톤에 해당되었다. 3. 밭농사에 의한 토양유실저감량을 객토단가로 환산할 경우 연간 4,974억원에 해당하였다. 4. 토양유실 세부모형중 LS값이 1.72로 매우 높았는데, 밭농사의 공익기능을 제고하기 위해서는 등고선, 대상재배 등 농경적인 접근과 계단전 등의 전환 등 농토목적인 접근방식이 필요하다고 생각된다.