• Title/Summary/Keyword: Loosely coupled GPS/INS integrated navigation

Search Result 13, Processing Time 0.024 seconds

Design of a loosely-coupled GPS/INS integration system (약결합 방식의 GPS/INS 통합시스템 설계)

  • 김종혁;문승욱;김세환;황동환;이상정;오문수;나성웅
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.186-196
    • /
    • 1999
  • The CPS provides data with long-term stability independent of passed time and the INS provides high-rate data with short-term stability. By integrating these complementary systems, a highly accurate navigation system can be achieved. In this paper, a loosely-coupled GPS/INS integration system is designed. It is a simple structure and is easy to implement and preserves independent navigation capability of GPS and INS. The integration system consists of a NCU, an IMU, a GPS receiver, and a monitoring system. The navigation algorithm in the NCU is designed under the multi-tasking environment based on a real-time kernel system and the monitoring system is designed using the Visual C++. The integrated Kalman filter is designed as a feedback formed 15-state filter, in which the states are position errors, velocity errors, attitude errors and sensor bias errors. The van test result shows that the integrated system provides more accurate navigation solution then the inertial or the GPS-alone navigation system.

  • PDF

Performance Analysis of GPS/INS Integrated Navigation Systems (GPS/INS 통합 항법시스템의 성능분석에 관한 연구)

  • Cho, J.B.;Won, J.H.;Ko, S.J.;Lee, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.822-825
    • /
    • 1999
  • This paper compares two methods of GPS/INS integration ; tightly-coupled integration ana loosely-coupled integration. In the tightly -coupled method an integrated Kalman filter is designed to process raw GPS measurement data for state update and INS data for propagation. The loosely-coupled integration method uses the solution outputs from a stand-alone GPS receiver for update. The loosely-coupled method is simpler and can readily be applied to off-the-self receivers and sensors while the tightly-coupled integration requires access to raw measurement mechanism of the receiver. Simulation result show that the tightly-coupled integration system exhibits better performance and robustness than loosely-coupled integration method.

  • PDF

A study on INS/GPS implementation of loosely coupled method for localization of mobile robot. (이동로봇의 위치 추정을 위한 약결합 방식의 INS/GPS 구현에 관한 연구)

  • Park, Myung-Hoon;Hong, Seung-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.493-495
    • /
    • 2004
  • In this paper, shows a research in accordance with the design the implementation of the localization system for mobile robot using INS(Inertial Navigation System) and GPS(Global Positioning System). First, a Strapdown Inertial Navigation System : SDINS is designed and implemented for low speed walking robot, by modifying Inertial Navigation System which is widely used for rocket, airplane, ship and so on. In addition, thesis proposes the localization of robot with the method of loosely coupled method by using Kalman Filter with INS/GPS integrated system to utilize assumed position and steed data from GPS.

  • PDF

Loosely-Coupled Vision/INS Integrated Navigation System

  • Kim, Youngsun;Hwang, Dong-Hwan
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.2
    • /
    • pp.59-70
    • /
    • 2017
  • Since GPS signals are vulnerable to interference and obstruction, many alternate aiding systems have been proposed to integrate with an inertial navigation system. Among these alternate systems, the vision-aided method has become more attractive due to its benefits in weight, cost and power consumption. This paper proposes a loosely-coupled vision/INS integrated navigation method which can work in GPS-denied environments. The proposed method improves the navigation accuracy by correcting INS navigation and sensor errors using position and attitude outputs of a landmark based vision navigation system. Furthermore, it has advantage to provide redundant navigation output regardless of INS output. Computer simulations and the van tests have been carried out in order to show validity of the proposed method. The results show that the proposed method works well and gives reliable navigation outputs with better performance.

Performance Analysis of INS/GPS Integration System (INS/GPS 결합방식에 따른 성능분석)

  • Park, Young-Bum;Lee, Jang-Gyu;Park, Chan-Gook
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2433-2435
    • /
    • 2000
  • Inertial Navigation System(INS) provides short-term accurate navigation solution but its error grows with time due to integration characteristics. Meanwhile, Global Positioning System(GPS) provides long-term stable solution but it has poor error characteristics in high dynamic region. So for its synergistic relationship, an integrated INS/GPS systems has been widely used as an advanced navigation system. Generally, two kinds of integration method are used. One is loosely coupled mode which uses GPS-derived position and velocity as measurements in an integrated Kalman filter. The other is tightly coupled one which uses pseudorange and pseudorange rate as Kalman filter measurements. In this paper the system error models and observation models for two kinds of integrated systems are derived, respectively, and their performance are compared through Monte-Carlo simulations.

  • PDF

MEMS GPS/INS Navigation System for an Unmanned Ground Vehicle Operated in Severe Environment (극한 무인 로봇 차량을 위한 MEMS GPS/INS 항법 시스템)

  • Kim, Sung-Chul;Hong, Jin-Seok;Song, Jin-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.133-139
    • /
    • 2007
  • An unmanned ground vehicle can perform its mission automatically without human control in unknown environment. To move up to a destination in various surrounding situation, navigational information is indispensible. In order to be adopted for an unmanned vehicle, the navigation box is small, light weight and low power consumption. This paper suggests navigation system using a low grade MEMS IMU for supplying position, velocity, and attitude of an unmanned ground vehicle. This system consists of low cost and light weight MEMS sensors and a GPS receiver to meet unmanned vehicle requirements. The sensors are basically integrated by loosely coupled method using Kalman filter and internal algorithms are divided into initial alignment, sensor error compensation, and complex navigation algorithm. The performance of the designed navigation system has been analyzed by real time field test and compared to commercial tactical grade GPS/INS system.

Design of Tightly Coupled INS/DVL/RPM Integrated Navigation System (강결합 방식의 INS/DVL/RPM 복합항법시스템 설계)

  • Yoo, Tae-Suk;Kim, Moon-Hwan;Yoon, Seon-Il;Kim, Dae-Joong
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.470-478
    • /
    • 2019
  • Because the global positioning system (GPS) is not available in underwater environments, an inertial navigation system (INS)/doppler velocity log (DVL) integrated navigation system is generally implemented. In general, an INS/DVL integrated system adopts a loosely coupled method. However, in this loosely coupled method, although the measurement equation for the filter design is simple, the velocity of the body frame cannot be accurately measured if even one of the DVL transducer signals is not received. In contrast, even if only one or two velocities are measured by the DVL transducers, the tightly coupled method can utilize them as measurements and suppress the error increase of the INS. In this paper, a filter was designed to regenerate the measurements of failed transducers by taking advantage of the tightly coupled method. The regenerated measurements were the normal DVL transducer measurements and the estimated velocity in RPM. In order to effectively estimate the velocity in RPM, a filter was designed considering the effects of the tide. The proposed filter does not switch all of the measurements to RPM if the DVL transducer fails, but only switches information from the failed transducer. In this case, the filter has the advantage of being able to be used as a measurement while continuously estimating the RPM error state. A Monte Carlo simulation was used to determine the performance of the proposed filters, and the scope of the analysis was shown by the standard deviation ($1{\sigma}$, 68%). Finally, the performance of the proposed filter was verified by comparison with the conventional tightly coupled method.

Development of a Software Platform for Designing Navigation Algorithm of a GPS/INS Integrated System (GPS/INS 통합 시스템의 항법 알고리즘 설계를 위한 소프트웨어 플랫폼 개발)

  • Lim, Deok-Won;Kim, Jeong-Won;Jeong, Ho-Cheol;Hwang, Dong-Hwan;Lee, Sang-Jeong
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.197-198
    • /
    • 2008
  • A software platform which is able to evaluate the performances of a GPS/INS integrated system has been developed in this paper. And it consists of four parts including GUI(Graphic User Interface) part, GPS part, INS part and integrated filter part. It basically offers the loosely, tightly and deeply coupled GPS/INS algorithms, and many design parameters can be changed by users via GUI. Each functions of the platform has been confirmed with GPS signals and IMU data from commercial simulators.

  • PDF

Analysis of Factors Affecting Performance of Integrated INS/SPR Positioning during GPS Signal Blockage

  • Kang, Beom Yeon;Han, Joong-hee;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.6
    • /
    • pp.599-606
    • /
    • 2014
  • Since the accuracy of Global Positioning System (GPS)-based vehicle positioning system is significantly degraded or does not work appropriately in the urban canyon, the integration techniques of GPS with Inertial Navigation System (INS) have intensively been developed to improve the continuity and reliability of positioning. However, its accuracy is degraded as INS errors are not properly corrected due to the GPS signal blockage. Recently, the image-based positioning techniques have been started to apply for the vehicle positioning for the advanced in processing techniques as well as the increased the number of cars installing the camera. In this study, Single Photo Resection (SPR), which calculates the camera exterior orientation parameters using the Ground Control Points (GCPs,) has been integrated with the INS/GPS for continuous and stable positioning. The INS/GPS/SPR integration was implemented in both of a loosely and a tightly coupled modes, based on the Extended Kalman Filter (EKF). In order to analyze the performance of INS/SPR integration during the GPS outage, the simulation tests were conducted with a consideration of factors affecting SPR performance. The results demonstrate that the accuracy of INS/SPR integration is depended on magnitudes of the GCP errors and SPR processing intervals. Additionally, the simulation results suggest some required conditions to achieve accurate and continuous positioning, used the INS/SPR integration.

Measurement Delay Error Compensation for GPS/INS Integrated System (GPS/INS 통합시스템의 측정치 시간지연오차 보상)

  • Lyou Joon;Lim You-Chol
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • The INS(Inertial Navigation System) provides high rate position, velocity and attitude data with good short-term stability while the GPS(Global Position System) provides position and velocity data with long-term stability. By integrating the INS with GPS, a navigation system can be achieved to Provide highly accurate navigation Performance. For the best performance, time synchronization of GPS and INS data is very important in GPS/INS integrated system But, it is impossible to synchronize them exactly due to the communication and computation time-delay. In this paper, to reduce the error caused by the measurement time-delay in GPS/INS integrated systems, error compensation methods using separate bias Kalman filter are suggested for both the loosely-coupled and the tightly-coupled GPS/INS integration systems. Linearized error models for the position and velocity matching GPS/INS integrated systems are Int derived by linearizing with respect to its time-delay and augmenting the delay-state into the conventional state equations for each case. And then separate bias Kalman Inter is introduced to estimate the time-delay during only initial navigation stage. The simulation results show that the present method is effective enough resulting in considerably less position error.