• Title/Summary/Keyword: Loop design

Search Result 2,490, Processing Time 0.025 seconds

Measurement of Shear Modulus at Small Strains using Cone Pressuremeter Test (Cone Pressuremeter Test를 이용한 미소변형에서 전단변형계수 측정)

  • Yi, Chang-Tok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.135-145
    • /
    • 2005
  • Geotechnical design routinely requires that in-situ strength, stiffness of the ground be determined. In the working stress conditions, the strain level in a ground experienced by existing structures and during construction is less than about 0.1%~1%. In order to analyze the deformational behavior accurately, the in-situ testing technique which provides the reliable deformational characteristics at small strains, needs to be developed. Cone pressuremeter tests were performed on the western off-shore region of korea, and analyzed using cavity expansion theory and curve fitting technique to obtain the shear modulus at small strain level of $10^{-1}%$. The value of $E_u/S_u$ ratio for the marine clay shows about 589 at the small strain. However the value of $E_u/S_u$ estimated by lab tests are much smaller values ranged from 81 to 91. It is indicated that the curve fitting technique from CPM tests results can be used to obtain the shear modulus at small strain.

End-to-End Congestion Control of High-Speed Gigabit-Ethernet Networks based on Smith's Principle

  • Lee, Seung-Hyub;Cho, Kwang-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.101-104
    • /
    • 2000
  • Nowadays, the issue of congestion control in high-speed communication networks becomes critical in view of the bandwidth-delay products for efficient data flow. In particular, the fact that the congestion is often accompanied by the data flow from the high-speed link to low-speed link is important with respect to the stability of closed-loop congestion control. The Virtual-Connection Network (VCN) in Gigabit Ethernet networks is a packet-switching based network capable of implementing cell- based connection, link-by-link flow-controlled connection, and single- or multi-destination virtual connections. VCN described herein differ from the virtual channel in ATM literature in that VCN have link-by-link flow control and can be of multi-destination. VCNs support both connection-oriented and connectionless data link layer traffic. Therefore, the worst collision scenario in Ethernet CSMA/CD with virtual collision brings about end-to-end delay. Gigabit Ethernet networks based on CSMA/CD results in non-deterministic behavior because its media access rules are based on random probability. Hence, it is difficult to obtain any sound mathematical formulation for congestion control without employing random processes or fluid-flow models. In this paper, an analytical method for the design of a congestion control scheme is proposed based on Smith's principle to overcome instability accompanied with the increase of end-to-end delays as well as to avoid cell losses. To this end, mathematical analysis is provided such that the proposed control scheme guarantees the performance improvement with respect to bandwidth and latency for selected network links with different propagation delays. In addition, guaranteed bandwidth is to be implemented by allowing individual stations to burst several frames at a time without intervening round-trip idle time.

  • PDF

Guaranteed Cost Control for Discrete-time Linear Uncertain Systems with Time-varying Delay (시변 시간지연을 가지는 이산 선형 불확실성 시스템에 대한 보장 비용 제어)

  • Kim, Ki-Tae;Cho, Sang-Hyun;Lee, Sang-Kyung;Park, Hong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.6
    • /
    • pp.20-26
    • /
    • 2002
  • This paper deals with the guaranteed cost control problems for a class of discrete-time linear uncertain systems with time-varying delay. The uncertain systems under consideration depend on time-varying norm-bounded parameter uncertainties. We address the existence condition and the design method of the memoryless state feedback control law such that the closed loop system not only is quadratically stable but also guarantees an adequate level of performance for all admissible uncertainties. Through some changes of variables and Schur complement, It is shown that the sufficient condition can be rewritten as an LMI(linear matrix inequality) form in terms of all variables.

Design of Hysteretic Buck Converter with A Low Output Ripple Voltage and Fixed Switching Frequency in CCM (작은 출력 전압 리플과 연속 전도모드에서 고정된 스위칭 주파수를 가지는 히스테리틱 벅 변환기 설계)

  • Jeong, Tae-Jin;Jo, Yong-Min;Lee, Tae-Heon;Yoon, Kwang Sub
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.50-56
    • /
    • 2015
  • An efficient fast response hysteretic buck converter suitable for mobile application is propoesed. The problems of large output ripple and difficulty in using of small power inductor that conventional hysteretic converter has are improved by adding ramp generator. and the changeable switching frequency with load current is fixed by adding a delay time control circuit composed of PLL structure resulting in decrease of EMI noise. The circuits are implemented by using BCDMOS 0.35um 2-polt 4-metal process. Measurement results show that the converter operates with a switching frequency of 1.85MHz when drives 80mA load current. As the converter drives over 170mA load current, the switching frequency is fixed on 2MHz. The converter has output ripple voltage of less 20mV and more than efficiency 85% with 50~500mA laod current condition.

Power Amplifier Design using the Novel PBG Structure for Linearity Improvement and Size Reduction (선형성 개선과 크기 축소를 위한 새로운 PBG 구조를 이용한 전력증폭기 설계)

  • Choi, Jae-Won;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.7 s.361
    • /
    • pp.29-34
    • /
    • 2007
  • This paper presents a novel photonic bandgap (PBG) structure for size reduction and linearity improvement in power amplifier. The proposed structure is a two-dimensional (2-D) periodic lattice patterned on a dielectric slab that does not require nonplanar fabrication process. Throughout the experi-mental results, this structure has more broad stopband and high suppression performance than conventional three cell PBG and distorted uniplanar compact-PBG (DUC-PBG). This new PBG structure can be applied with power amplifier for linearity improvement. The 3rd intermodulation distortion (IMD3) of the power amplifier using new PBG structure is -36.16 dBc for (code division multiple access) CDMA applications. Compared with power amplifier without the proposed PBG structure, improved IMD3 is -13.49 dBc.

Complex Mobile Antenna for Wireless Power Transfer & Near Field Communication (근거리 통신 및 무선 전력 전송을 위한 복합 모바일 안테나)

  • Lee, Seok-Moon;Ha, Cheun-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.2
    • /
    • pp.149-155
    • /
    • 2014
  • In this paper, we study the complex mobile antenna for WPT(Wireless Power Transfer) with NFC(Near Field Communication) of inductive coupling using FPCB which has half thickness compared with the existing coil type antennas. Considering the pattern thickness of loop antenna, the analysis of electromagnetic wave absorber and battery's influence, absorber thickness, the ranges of design parameters are obtained. The proposed antenna has 0.45 mm thickness using single layer 3 oz FPCB and absorber. From measurement, the characteristics of NFC antenna can be satisfied with the specifications of EMVCo. and domestic mobile telecommunication and the transmission efficiency of the proposed WPT antenna is 68.1 % which is competitive with the existing coil type antenna. From the results of this paper, it has been confirmed that the proposed antenna can be used as the WPT and NFC antenna for mobile phone. Key words: Wireless Power Transfer, Near Field Communication, Mobile Phone Antenna, Absorber, FPCB.

Design of a Double-Faced Window Printed Antenna for Aircraft Applications (항공기용 양면 인쇄형 글래스 안테나 설계)

  • Byun, Gang-Il;Han, Wone-Keun;Choo, Ho-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.2
    • /
    • pp.131-139
    • /
    • 2011
  • In this paper, we propose a double-faced window printed antenna for aircraft applications. The proposed antenna structure consists of a feeding line and a multi-loop radiator located on different sides of the window to use the limited given-area effectively. The proposed antenna is optimized by the genetic algorithm in conjunction with the FEKO EM simulator. The optimized antenna is built and installed on a 1/10 sized KUH-Surion mock-up and antenna performances such as the reflection coefficient and the radiation patterns are measured. The optimized antenna shows a half power matching bandwidth of about 33 % at 60 MHz and an average bore-sight gain of about -3.49 dBi. To verify the reception capability of the optimized antenna, we simulated the received power according to a flight scenario. The result confirms that the optimized antenna shows a minimum received power level above -60 dBm at a range of 200 km, which is similar to the pole antenna that is currently used as a FM voice antenna for KUH-Surion.

Adaptive self-structuring fuzzy controller of wind energy conversion systems (풍력 발전 계통의 자기 구조화 적응 퍼지 제어기 설계)

  • Park, Jang-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.2
    • /
    • pp.151-157
    • /
    • 2013
  • This paper proposes an online adaptive fuzzy controller for a wind energy conversion system (WECS) that is intrinsically highly nonlinear plant. In real application, to obtain exact system parameters such as power coefficient, many measuring instruments and off-line implementations are required, which is very difficult to perform. This shortcoming can be avoided by introducing fuzzy system in the controller design in this paper. The proposed adaptive fuzzy control scheme using self-structuring algorithm requires no system parameters to meet control objectives. Even the structure of the fuzzy system is automatically grows on-line, which distinguishes our proposed algorithm over the previously proposed fuzzy control schemes. Combining derivative estimator for wind velocity, the whole closed-loop system is shown to be stable in the sense of Lyapunov.

Second-order Sigma-Delta Modulator for Mobile BMIC Applications (모바일 기기용 BMIC를 위한 2차 시그마 델타 모듈레이터)

  • Park, Chulkyu;Jang, Kichang;Kim, Hyojae;Choi, Joongho
    • Journal of IKEEE
    • /
    • v.18 no.2
    • /
    • pp.263-271
    • /
    • 2014
  • This paper presents design of the second-order sigma-delta modulator for converting voltage and temperature signals to digital ones in Battery Management IC (BMIC) for mobile applications. The second-order single-loop switched-capacitor sigma-delta modulator with 1-bit quantization in 0.13-um CMOS technology is proposed. The proposed modulator is designed using switched-opamp technique for saving power consumption. With an oversampling ratio of 256 and clock frequency of 256kHz, the modulator achieves a measured 83-dB dynamic range and a peak signal-to-(noise+distortion) ratio (SNDR) of 81.7dB. Power dissipation is about 0.66 mW at 3.3 V power supply and the occupied core area is $0.425mm^2$.

Bayesian Reliability Analysis Using Kriging Dimension Reduction Method(KDRM) (크리깅 기반 차원감소법을 이용한 베이지안 신뢰도 해석)

  • An, Da-Un;Choi, Joo-Ho;Won, Jun-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.275-280
    • /
    • 2008
  • A technique for reliability-based design optimization(RBDO) is developed based on the Bayesian approach, which can deal with the epistemic uncertainty arising due to the limited number of data. Until recently, the conventional REDO was implemented mostly by assuming the uncertainty as aleatory which means the statistical properties are completely known. In practice, however, this is not the case due to the insufficient data for estimating the statistical information, which makes the existing RBDO methods less useful. In this study, a Bayesian reliability is introduced to take account of the epistemic uncertainty, which is defined as the lower confidence bound of the probability distribution of the original reliability. In this case, the Bayesian reliability requires double loop of the conventional reliability analyses, which can be computationally expensive. Kriging based dimension reduction method(KDRM), which is a new efficient tool for the reliability analysis, is employed to this end. The proposed method is illustrated using a couple of numerical examples.