• Title/Summary/Keyword: Loop Probe

Search Result 60, Processing Time 0.039 seconds

Secondary Structure for RNA Aptamers Binding to Guanine-Rich Sequence in the 5'-UTR RNA of N-Ras Oncogene

  • Cho, Bongrae
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.2
    • /
    • pp.121-124
    • /
    • 2021
  • RNA molecules which bind to the G-rich sequence in the 5'-UTR RNA which plays an important role in expression of N-ras, were selected. The secondary structures of five selected RNA aptamers including primer sequence were found by the CLC RNA workbench ver. 4.2 program (www.clcbio.com) and investigated with RNA structural probes such as RNase T1 which has specificity for a G in single-stranded region, RNase V1 specific for double strand and nuclease S1 specific for single strand. The generalized secondary structure model was proposed and characterized. It was composed of a central long double strand region flanked by single strand region at both end sides. The double strand region had an internal single-strand region and bulges. The single strand loop in the right side was composed of four or five nucleotides.

IN-LINE NIR SPECTROSCOPY AS A TOOL FOR THE CONTROL OF FERMENTATION PROCESSES IN THE FERMENTED MEATS INDUSTRY

  • Tamburini, Elena;Vaccari, Giuseppe;Tosi, Simona;Trilli, Antonio
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.3104-3104
    • /
    • 2001
  • The research described here was undertaken with the aim of monitoring, optimizing and ultimately controlling the production of heterofermentative microbes used as starters in the salami industry. The use of starter cultures in the fermented meats industry is a well-established technique used to shorten and standardize the ripening process, and to improve and control the organoleptic quality of the final product. Starter cultures are obtained by the submerged cultivation of suitable microorganisms in stirred, and sometimes aerated, fermenters where monitoring of key physiological parameters such as the concentration of biomass, substrates and metabolites suffers from the general lack of real-time measurement techniques applicable to aseptic processes. In this respect, the results of the present work are relevant to all submerged fermentation processes. Previous work on the application of on-line NIR spectroscopy to the lactic acid fermentation (Dosi et al. - Monreal NIR1995) had successfully used a system based on a measuring cell included in a circulation loop external to the fermenter. The fluid handling and sterility problems inherent in an external circulation system prompted us to explore the use of an in-line system where the NIR probe is immersed in the culture and is thus exposed to the hydrodynamic conditions of the stirred and aerated fluid. Aeration was expected to be a potential source of problems in view of the possible interference of air bubbles with the measurement device. The experimental set-up was based on an in-situ sterilizable NIR probe connected to the instrument by means of an optical fiber bundle. Preliminary work was carried out to identify and control potential interferences with the measurement, in particular the varying hydrodynamic conditions prevailing at the probe tip. We were successful in defining the operating conditions of the fermenter and the geometrical parameters of the probe (flow path, positioning, etc.) were the NIR readings were reliable and reproducible. The system thus defined was then used to construct and validate calibration curves for tile concentration of biomass, carbon source and major metabolites of two different microorganisms used as salami starters. Real-time measurement of such parameters coupled with the direct interfacing of the NIR instrument with the PC-based measurement and control system of the fermenter enabled the development of automated strategies for the interactive optimization of the starter production process.

  • PDF

Validation of Stem-loop RT-qPCR Method on the Pharmacokinetic Analysis of siRNA Therapeutics (Stem-loop RT-qPCR 분석법을 이용한 siRNA 치료제의 생체시료 분석법 검증 및 약물 동태학적 분석)

  • Kim, Hye Jeong;Kim, Taek Min;Kim, Hong Joong;Jung, Hun Soon;Lee, Seung Ho
    • Journal of Life Science
    • /
    • v.29 no.6
    • /
    • pp.653-661
    • /
    • 2019
  • The first small interfering RNA (siRNA) therapeutics have recently been approved by the Food and Drug Administration in the U.S., and the demand for a new RNA therapeutics bioanalysis method-which is essential for pharmacokinetics, including the absorption, distribution, metabolism, and excretion of siRNA therapeutics-is rapidly increasing. The stem-loop real-time qPCR (RT-qPCR) assay is a useful molecular technique for the identification and quantification of small RNA (e.g., micro RNA and siRNA) and can be applied for the bioanalysis of siRNA therapeutics. When the anti-HPV E6/E7 siRNA therapeutic was used in preclinical trials, the established stem-loop RT-qPCR assay was validated. The limit of detection was sensitive up to 10 fM and the lower limit of quantification up to 100 fM. In fact, the reliability of the established test method was further validated in three intra assays. Here, the correlation coefficient of $R^2$>0.99, the slope of -3.10 ~ -3.40, and the recovery rate within ${\pm}20%$ of the siRNA standard curve confirm its excellent robustness. Finally, the circulation profiles of siRNAs were demonstrated in rat serum, and the pharmacokinetic properties of the anti-HPV E6/E7 siRNA therapeutic were characterized using a stem-loop RT-qPCR assay. Therefore, the stemloop RT-qPCR assay enables accurate, precise, and sensitive siRNA duplex quantification and is suitable for the quantification of small RNA therapeutics using small volumes of biological samples.

Evaluation of 475 ℃ embrittlement in UNS S32750 super duplex stainless steel using four-point electric conductivity measurements

  • Gutierrez-Vargas, Gildardo;Ruiz, Alberto;Lopez-Morelos, Victor H.;Kim, Jin-Yeon;Gonzalez-Sanchez, Jorge;Medina-Flores, Ariosto
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2982-2989
    • /
    • 2021
  • One of the consequences of the 475 ℃ embrittlement of duplex stainless steels is the reduction of the resistance to localized corrosion. Therefore, the detection of this type of embrittlement before the material exhibits significant loss in toughness, and corrosion resistance is important to ensure the structural integrity of critical components under corrosion threats. In this research, conductivity measurements are performed using the alternating current potential drop (ACPD) technique with using a portable four-point probe as a nondestructive evaluation (NDE) method for detecting the embrittlement in a 2507 (UNS S32750) super duplex stainless steel (SDSS) aged at 475 ℃ from as-received condition to 300 h. The electric conductivity results were compared against two electrochemical tests namely double loop electrochemical potentiokinetic reactivation (DL-EPR) and critical pitting temperature (CPT). Mechanical tests and the microstructure characterized using scanning electron microscopy (SEM) imaging are conducted to track the progress of embrittlement. It is shown that the electric conductivity correlates with the changes in impact energy, microhardness, and CPT corrosion tests result demonstrating the feasibility of the four-point probe as a possible field-deployable method for evaluating the 475 ℃ embrittlement of 2507 SDSS.

Management of a traumatic anorectal full-thickness laceration: a case report

  • Fortuna, Laura;Bottari, Andrea;Somigli, Riccardo;Giannessi, Sandro
    • Journal of Trauma and Injury
    • /
    • v.35 no.3
    • /
    • pp.215-218
    • /
    • 2022
  • The rectum is the least frequently injured organ in trauma, with an incidence of about 1% to 3% in trauma cases involving civilians. Most rectal injuries are caused by gunshot wounds, blunt force trauma, and stab wounds. A 46-year-old male patient was crushed between two vehicles while he was working. He was hemodynamically unstable, and the Focused Assessment with Sonography for Trauma showed hemoperitoneum and hemoretroperitoneum; therefore, damage control surgery with pelvic packing was performed. A subsequent whole-body computed tomography scan showed a displaced pelvic bone and sacrum fracture. There was evidence of an anorectal full-thickness laceration and urethral laceration. In second-look surgery performed 48 hours later, the pelvis was stabilized with external fixators, and it was decided to proceed with loop sigmoid colostomy. A tractioned rectal probe with an internal balloon was positioned in order to approach the flaps of the rectal wall laceration. On postoperative day 13, a radiological examination with endoluminal contrast injected from the stoma after removal of the balloon was performed and showed no evidence of extraluminal leak. Rectosigmoidoscopy, rectal manometry, anal sphincter electromyography, and trans-stomic transit examinations showed normal findings, indicating that it was appropriate to proceed with the closure of the colostomy. The postoperative course was uneventful. The optimal management for extraperitoneal penetrating rectal injuries continues to evolve. Primary repair with fecal diversion is the mainstay of treatment, and a conservative approach to rectal lacerations with an internal balloon in a rectal probe could provide a possibility for healing with a lower risk of complications.

MRI-Induced Full Thickness Burn on the Ear Lobule due to Pulse Oximetry: A Case Report (증례보고: MRI 검사시 귓불에 부착한 산소측정기로 인해 발생한 전층 화상)

  • Kim, BumSik;Lim, SooA;Yoon, JungSoo;Eo, SuRak;Han, Yea Sik
    • Journal of the Korean Burn Society
    • /
    • v.24 no.2
    • /
    • pp.43-45
    • /
    • 2021
  • Magnetic Resonance Image (MRI) has been used as a safe, conventional and harmless diagnostic tool. However, thermal injuries have frequently been reported during MRI scanning due to the heat generated by the reaction with the magnetic field. It is recommended that metal-containing monitoring devices such as pulse oximetry and ECG monitoring leads should be removed prior to the start of the MRI scan, but these monitoring devices are inevitably placed in children or patients in the intensive care unit who have low compliance with the scan. Since the interaction between the metal probe or wire loop of pulse oximetry and the magnetic field can result in high thermal conduction, full-thickness burn can occur over the entire body surface during the MRI examination. Several cases of thermal burns from pulse oximetry on the fingers have been reported. However, we present a case of a full-thickness burn arising left earlobe in a 2-month-old child caused by the high conduction heat from pulse oximetry metal probe.

Non-contact Detection of Ultrasonic Waves Using Fiber Optic Sagnac Interferometer (광섬유 Sagnac 간섭계를 이용한 초음파의 비접촉식 감지)

  • Lee, Jeong-Ju;Jang, Tae-Seong;Lee, Seung-Seok;Kim, Yeong-Gil;Gwon, Il-Beom;Lee, Wang-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1400-1409
    • /
    • 2001
  • This paper describes a fiber optic sensor suitable for non-contact detection of ultrasonic waves. This sensor is based on a fiber optic Sagnac interferometer. Quadrature phase bias between two interfering laser beams in Sagnac loop is introduced by a polarization controller. A stable quadrature phase bias can be confirmed by observing the interferometer output versus phase bias. This method eliminates a digital signal processing for detection of ultrasonic waves using Sagnac interferometer. Interference intensity is affected by the frequency of ultrasonic waves and the time delay of Sagnac loop. Collimator is attached to the end of the probing fiber to focus the light beam onto the specimen surface and to collect the reflected light back into the fiber probe. Ultrasonic waves produced by conventional ultrasonic transducers are detected. This fiber optic sensor based on Sagnac interferometer is very effective for detection of small displacement with high frequency such as ultrasonic waves used in conventional non-destructive testing.

Degradation Evaluation of Mechanical Properties for 12Cr Ferrite Heat Resisting Steel by Reversible Permeability (가역투자율에 의한 12Cr 페라이트 내열강의 역학적 물성의 열화평가)

  • Ryu, Kwon-Sang;Kim, Min-Gi;Nahm, Seung-Hoon;Kim, Chung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.464-470
    • /
    • 2010
  • The integrity of the industrial equipment in use under high temperature and high pressure must be assessed by regularly measuring the degraded mechanical properties during service time. In order to nondestructively monitor the degraded mechanical properties of industrial equipment, a measuring method of the reversible permeability(RP) using surface type probe is presented. The method for measuring the RP is based on that RP is the differential value of hysteresis loop. The RP is exactly the foundation hatmonics induced in a detecting coil measured by lock-in amplifier tuned to a frequency of the alternating perturbing magnetic field. The peak of RP is measured around the coercive force. Steel material used in this work was 12Cr ferritic heat resisting steel. The eleven kinds of samples aged during different times under same temperature ($700^{\circ}C$) were prepared. Peak interval of reversible permeability(PIRP), Vickers hardness, and tensile strength measured for the aged samples decreased abruptly for short aging time (below 500 h), but the change became small at a long aging time. Vickers hardness and tensile strength linearly decreased as RIRP decreased, so the degraded mechanical properties of 12Cr ferritic heat resisting steel could be nondestructively evaluated by measuring RIRP.

Features of the flow over a finite length square prism on a wall at various incidence angles

  • Sohankar, A.;Esfeh, M. Kazemi;Pourjafari, H.;Alam, Md. Mahbub;Wang, Longjun
    • Wind and Structures
    • /
    • v.26 no.5
    • /
    • pp.317-329
    • /
    • 2018
  • Wake characteristics of the flow over a finite square prism at different incidence angles were experimentally investigated using an open-loop wind tunnel. A finite square prism with a width D = 15 mm and a height H = 7D was vertically mounted on a horizontal flat plate. The Reynolds number was varied from $6.5{\times}10^3$ to $28.5{\times}10^3$ and the incidence angle ${\alpha}$ was changed from $0^{\circ}$ to $45^{\circ}$. The ratio of boundary layer thickness to the prism height was about ${\delta}/H=7%$. The time-averaged velocity, turbulence intensity and the vortex shedding frequency were obtained through a single-component hotwire probe. Power spectrum of the streamwise velocity fluctuations revealed that the tip and base vortices shed at the same frequency as that ofspanwise vortices. Furthermore, the results showed that the critical incidence angle corresponding to the maximum Strouhal number and minimum wake width occurs at ${\alpha}_{cr}=15^{\circ}$ which is equal to that reported for an infinite prism. There is a reduction in the size of the wake region along the height of the prism when moving away from the ground plane towards the free end.

Fabrication of High Permeable Nanoporous Carbon-SiO$_2$ Membranes Derived from Siloxane-containing Polyimides

  • Kim, Youn Kook;Han, Sang Hoon;Park, Ho Bum;Lee, Young Moo
    • Korean Membrane Journal
    • /
    • v.6 no.1
    • /
    • pp.16-23
    • /
    • 2004
  • The silica containing carbon (C-SiO$_2$) membranes were fabricated using poly(imide siloxane) (PIS) having -CO- swivel group. The characteristics of porous C-SiO$_2$ structures prepared by the pyrolysis of poly(imide siloxane) were related with the micro-phase separation between the imide block and the siloxane block. Furthermore, the nitrogen adsorption isotherms of the CMS and the C-SiO$_2$ membranes were investigated to define the characteristics of porous structures. The C-SiO$_2$ membranes derived from PIS showed the type IV isotherm and possessed the hysteresis loop, which was associated with the mesoporous carbon structures, while the CMS membranes derived from PI showed the type I isotherm. For the molecular sieving probe, the C-SiO$_2$ membranes pyrolyzed at 550, 600, and 700$^{\circ}C$ showed the O$_2$ permeability of 924, 1076, and 367 Barrer (1 ${\times}$ 10$\^$-10/㎤(STP)cm/$\textrm{cm}^2$$.$s$.$cmHg) and O$_2$/N$_2$ selectivity of 9, 8, and 12.