Browse > Article
http://dx.doi.org/10.1016/j.net.2021.03.018

Evaluation of 475 ℃ embrittlement in UNS S32750 super duplex stainless steel using four-point electric conductivity measurements  

Gutierrez-Vargas, Gildardo (Instituto de Investigacion en Metalurgia y Materiales, Universidad Michoacana de San Nicolas de Hidalgo)
Ruiz, Alberto (Instituto de Investigacion en Metalurgia y Materiales, Universidad Michoacana de San Nicolas de Hidalgo)
Lopez-Morelos, Victor H. (Instituto de Investigacion en Metalurgia y Materiales, Universidad Michoacana de San Nicolas de Hidalgo)
Kim, Jin-Yeon (GWW School of Mechanical Engineering, Georgia Institute of Technology)
Gonzalez-Sanchez, Jorge (Center for Corrosion Research, Autonomous University of Campeche)
Medina-Flores, Ariosto (Instituto de Investigacion en Metalurgia y Materiales, Universidad Michoacana de San Nicolas de Hidalgo)
Publication Information
Nuclear Engineering and Technology / v.53, no.9, 2021 , pp. 2982-2989 More about this Journal
Abstract
One of the consequences of the 475 ℃ embrittlement of duplex stainless steels is the reduction of the resistance to localized corrosion. Therefore, the detection of this type of embrittlement before the material exhibits significant loss in toughness, and corrosion resistance is important to ensure the structural integrity of critical components under corrosion threats. In this research, conductivity measurements are performed using the alternating current potential drop (ACPD) technique with using a portable four-point probe as a nondestructive evaluation (NDE) method for detecting the embrittlement in a 2507 (UNS S32750) super duplex stainless steel (SDSS) aged at 475 ℃ from as-received condition to 300 h. The electric conductivity results were compared against two electrochemical tests namely double loop electrochemical potentiokinetic reactivation (DL-EPR) and critical pitting temperature (CPT). Mechanical tests and the microstructure characterized using scanning electron microscopy (SEM) imaging are conducted to track the progress of embrittlement. It is shown that the electric conductivity correlates with the changes in impact energy, microhardness, and CPT corrosion tests result demonstrating the feasibility of the four-point probe as a possible field-deployable method for evaluating the 475 ℃ embrittlement of 2507 SDSS.
Keywords
Alternating current potential drop; Electric conductivity; $475^{\circ}C$ embrittlement; Localized corrosion; Duplex stainless steel;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Corcoran, P.B. Nagy, P. Cawley, Monitoring creep damage at a weld using a potential drop technique, Int. J. Pres. Ves. Pip. (2017) 15-25.
2 S. Prajapati, P.B. Nagy, P. Cawley, Potential drop detection of creep damage in the vicinity of welds, NDT E Int. 47 (2012) 56-65.   DOI
3 V.S. Moura, L.D. Lima, J.M. Pardal, A.Y. Kina, R.R.A. Corte, S.S.M. Tavares, Influence of microstructure on the corrosion resistance of the duplex stainless steel UNS S31803, Mater. Char. 59 (2008) 1127-1132.   DOI
4 N. Lopez, M. Cid, M. Puiggali, I. Azkarate, A. Pelayo, Application of double loop electrochemical potentiodynamic reactivation test to austenitic and duplex stainless steels, Mater. Sci. Eng., A 229 (1997) 123-128.   DOI
5 Y. Kawaguchi, S. Yamanaka, Mechanism of the change in thermoelectric power of cast duplex stainless steel due to thermal aging, J. Alloys Compd. 336 (2002) 301-314.   DOI
6 R. Silva, L. Baroni, C. Kugelmeier, M. Silva, S. Kuri, C. Rovere, Thermal aging at 475 C of newly developed lean duplex stainless steel 2404: mechanical properties and corrosion behavior, Corrosion Sci. 116 (2017) 66-73.   DOI
7 L. Pezzato, M. Lago, K. Brunelli, M. Breda, I. Calliari, Effect of the heat treatment on the corrosion resistance of duplex stainless steels, J. Mater. Eng. Perform. 27 (2018) 3859-3868.   DOI
8 J.D. Tucker, M.K. Miller, G.A. Young, Assessment of thermal embrittlement in duplex stainless steels 2003 and 2205 for nuclear power applications, Acta Mater. 87 (2015) 15-24.   DOI
9 G. Gutierrez-Vargas, A. Ruiz, J.-Y. Kim, V.H. Lopez-Morelos, R.R. Ambriz, Evaluation of thermal embrittlement in 2507 super duplex stainless steel using thermoelectric power, Nucl. Eng. Technol. 51 (2019) 1816-1821.   DOI
10 G. Gutierrez-Vargas, A. Ruiz, J.-Y. Kim, L.J. Jacobs, Characterization of thermal embrittlement in 2507 super duplex stainless steel using nonlinear acoustic effects, NDT E Int. 94 (2018) 101-108.   DOI
11 E. Madhi, P. Nagy, Sensitivity analysis of a directional potential drop sensor for creep monitoring, NDT E Int. 44 (2011) 708-717.   DOI
12 F. Danoix, P. Auger, Atom probe studies of the Fe-Cr system and stainless steels aged at intermediate temperature: a review, Mater. Char. 44 (2000) 177-201.   DOI
13 K.S. de Assis, F.V. de Sousa, M. Miranda, I.C. Margarit-Mattos, V. Vivier, O.R. Mattos, Assessment of electrochemical methods used on corrosion of superduplex stainless steel, Corrosion Sci. 59 (2012) 71-80.   DOI
14 R. Gunn, Duplex Stainless Steels: Microstructure, Properties and Applications, Elsevier Science, 1997.
15 H.D. Solomon, L.M. Levinson, Mossbauer effect study of '475°c embrittlement' of duplex and ferritic stainless steels, Acta Metall. 26 (1978) 429-442.   DOI
16 K. Weng, H. Chen, J. Yang, The low-temperature aging embrittlement in a 2205 duplex stainless steel, Mater. Sci. Eng., A 379 (2004) 119-132.   DOI
17 S.S.M. Tavares, A. Loureiro, J.M. Pardal, T.R. Montenegro, V.C. da Costa, Influence of heat treatments at 475 and 400 ℃ on the pitting corrosion resistance and sensitization of UNS S32750 and UNS S32760 superduplex stainless steels, Mater. Corros. 63 (2012) 522-526.   DOI
18 A. Mateo, L. Llanes, M. Anglada, A. Redjaimia, G. Metauer, Characterization of the intermetallic G-phase in an AISI 329 duplex stainless steel, J. Mater. Sci. 32 (1997) 4533-4540.   DOI
19 A.F. Padilha, R.L. Plaut, P.R. Rios, Stainless Steel Heat Treatment, CRC Press, Boca Raton, 2006.
20 J.S. Park, Y.K. Yoon, Evaluation of thermal aging embrittlement of duplex stainless steels by electrochemical method, Scripta Metall. Mater. 32 (1995) 1163-1168.   DOI
21 J.R. Bowler, Y. Huang, H. Sun, J. Brown, N. Bowler, Alternating current potential-drop measurement of the depth of case hardening in steel rods, Meas. Sci. Technol. 19 (2008), 075204.   DOI
22 N. Ebrahimi, M. Momeni, M.H. Moayed, A. Davoodi, Correlation between critical pitting temperature and degree of sensitisation on alloy 2205 duplex stainless steel, Corrosion Sci. 53 (2011) 637-644.   DOI
23 Z. Zhang, H. Zhao, H. Zhang, Z. Yu, J. Hu, L. He, J. Li, Effect of isothermal aging on the pitting corrosion resistance of UNS S82441 duplex stainless steel based on electrochemical detection, Corrosion Sci. 93 (2015) 120-125.   DOI
24 A. Girones, L. Llanes, M. Anglada, A. Mateo, Dynamic strain ageing effects on superduplex stainless steels at intermediate temperatures, Mater. Sci. Eng., A 367 (2004) 322-328.   DOI
25 R. Silva, L.F.S. Baroni, C.L. Kugelmeier, M.B.R. Silva, S.E. Kuri, C.A.D. Rovere, Thermal aging at 475℃ of newly developed lean duplex stainless steel 2404: mechanical properties and corrosion behavior, Corrosion Sci. 116 (2017) 66-73.   DOI
26 M. Hattestrand, P. Larsson, G. Chai, J.-O. Nilsson, J. Odqvist, Study of decomposition of ferrite in a duplex stainless steel cold worked and aged at 450-500℃, Mater. Sci. Eng., A 499 (2009) 489-492.   DOI
27 J. Sahu, U. Krupp, R. Ghosh, H.-J. Christ, Effect of 475 C embrittlement on the mechanical properties of duplex stainless steel, Mater. Sci. Eng., A 508 (2009) 1-14.   DOI
28 O.A. Hilders, M. Ramos, N.D. Pena, L. Saenz, Effect of 475 ℃ embrittlement on fractal behavior and tensile properties of a duplex stainless steel, J. Mater. Eng. Perform. 8 (1999) 87-90.   DOI
29 K.-H. Park, J.C. LaSalle, L.H. Schwartz, M. Kato, Mechanical properties of spinodally decomposed Fe-30 wt% Cr alloys: yield strength and aging embrittlement, Acta Metall. 34 (1986) 1853-1865.   DOI
30 H.M. Chung, Aging and life prediction of cast duplex stainless steel components, Int. J. Pres. Ves. Pip. 50 (1992) 179-213.   DOI
31 S. Li, Y. Wang, X. Wang, F. Xue, G-phase precipitation in duplex stainless steels after long-term thermal aging: a high-resolution transmission electron microscopy study, J. Nucl. Mater. 452 (2014) 382-388.   DOI
32 P.J. Grobner, The 885 °F(475 ℃) embrittlement of ferritic stainless steels, Metallur. Transact. 4 (1973) 251-260.   DOI
33 T. Yamada, S. Okano, H. Kuwano, Mechanical property and microstructural change by thermal aging of SCS14A cast duplex stainless steel, J. Nucl. Mater. 350 (2006) 47-55.   DOI
34 A. Isalgue, M. Anglada, J. Rodriguez-Carvajal, A. De Geyer, Study of the spinodal decomposition of an Fe-28Cr-2Mo-4Ni-Nb alloy by small-angle neutron scattering, J. Mater. Sci. 25 (1990) 4977-4980.   DOI
35 Y.S. Yi, T. Shoji, Detection and evaluation of material degradation of thermally aged duplex stainless steels: electrochemical polarization test and AFM surface analysis, J. Nucl. Mater. 231 (1996) 20-28.   DOI
36 J.O. Nilsson, Super duplex stainless steels, Mater. Sci. Technol. 8 (1992) 685-700.   DOI
37 D. Chandra, L.H. Schwartz, Mossbauer effect study of the 475℃ decomposition of Fe-Cr, Metallur. Transact. 2 (1971) 511-519.   DOI
38 F. Iacoviello, F. Casari, S. Gialanella, Effect of "475 ℃ embrittlement" on duplex stainless steels localized corrosion resistance, Corrosion Sci. 47 (2005) 909-922.   DOI
39 M.K. Miller, I.M. Anderson, J. Bentley, K.F. Russell, Phase separation in the Fe-Cr-Ni system, Appl. Surf. Sci. 94-95 (1996) 391-397.   DOI
40 P. Hedstrom, F. Huyan, J. Zhou, S. Wessman, M. Thuvander, J. Odqvist, The 475℃ embrittlement in Fe-20Cr and Fe-20Cr-X (X=Ni, Cu, Mn) alloys studied by mechanical testing and atom probe tomography, Mater. Sci. Eng., A 574 (2013) 123-129.   DOI
41 I.S. Hwang, A multi-frequency AC potential drop technique for the detection of small cracks, Meas. Sci. Technol. 3 (1992) 62-74.   DOI
42 M. Tane, T. Ichitsubo, H. Ogi, M. Hirao, Elastic property of aged duplex stainless steel, Scripta Mater. 48 (2003) 229-234.   DOI
43 S.S.M. Tavares, M.R. da Silva, J.M. Neto, Magnetic property changes during embrittlement of a duplex stainless steel, J. Alloys Compd. 313 (2000) 168-173.   DOI
44 D.H. Michael, R.T. Waechter, R. Collins, The measurement of surface cracks in metals by using a.c. Electric fields, Proc. Roy. Soc. Lond. Math. Phys. Sci. 381 (1982) 139-157.
45 C.-J. Park, H.-S. Kwon, Effects of aging at 475 ℃ on corrosion properties of tungsten-containing duplex stainless steels, Corrosion Sci. 44 (2002) 2817-2830.   DOI
46 C. rnek Ouml, M. Burke, T. Hashimoto, J. Lim, D. Engelberg, C. Ornek, 475 ℃ embrittlement of duplex stainless steel-a comprehensive microstructure characterization study, Mater. Performance Charact. 6 (2017) 409-436.
47 K. Chandra, R. Singhal, V. Kain, V. Raja, Low temperature embrittlement of duplex stainless steel: correlation between mechanical and electrochemical behavior, Mater. Sci. Eng., A 527 (2010) 3904-3912.   DOI
48 W. Horvath, W. Prantl, H. Stroissnigg, E.A. Werner, Microhardness and microstructure of austenite and ferrite in nitrogen alloyed duplex steels between 20 and 500℃, Mater. Sci. Eng., A 256 (1998) 227-236.   DOI
49 K.H. Lo, J.K.L. Lai, Microstructural characterisation and change in a.c. magnetic susceptibility of duplex stainless steel during spinodal decomposition, J. Nucl. Mater. 401 (2010) 143-148.   DOI
50 S. Tsuchiya, Y. Ishikawa, M. Ohtaka, T. Yoshimura, Atom probe study of the aging embrittlement of cast duplex stainless steel, JSME Int. J. Ser. A Mech. Material Eng. 38 (1995) 384-392.   DOI
51 Z. Zhang, H. Jing, L. Xu, Y. Han, L. Zhao, J. Zhang, Influence of microstructure and elemental partitioning on pitting corrosion resistance of duplex stainless steel welding joints, Appl. Surf. Sci. 394 (2017) 297-314.   DOI
52 J.W. Cahn, On spinodal decomposition, Acta Metall. 9 (1961) 795-801.   DOI