• Title/Summary/Keyword: Longitudinal vortex

Search Result 65, Processing Time 0.023 seconds

The Experimental Study of the Interaction Between the Flow rind Temperature Field and a Boundary Layer Due to a Variety of tole Height of a Vortex Generator (와동 발생기 높이 변화에 대한 경계층 내의 유동장과 온도장에 관한 실험적 연구)

  • Gwon, Su-In;Yang, Jang-Sik;Lee, Gi-Baek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.82-93
    • /
    • 2002
  • The effects of the interaction between the flow and temperature field and a boundary layer due to a variety of the height of a vortex generator are experimentally investigated. The test facility consists of a boundary-layer wind tunnel with the vortex generator protruding from the bottom surface. In order to control the strength of the longitudinal vortices, the angle of attack and the spacing distance of the vortex generator are 20 degree and 40 mm, respectively. The height of the vortex generator (H) is 15 mm, 20 mm and 30 mm and the cord length of it is 50 mm. Three-component mean velocity measurements are made using a 5-hole probe system and the surface temperature distribution is measured by the hue capturing method using thermochromatic liquid crystals. By using the method mentioned above, the following conclusions are obtained from the present experiment. The boundary layer is thinned in the downwash region where the strong downflow and the lateral outflow of the boundary layer fluid occur and thickened in the upwash re,3ion where the longitudinal vortex sweeps low momentum fluid away from the bottom surface. In case that the height of the vortex generator increases, the averaged circulation and the maximum vorticity of the vortex pair decrease. The contours of the non-dimensional temperature show the similar trends fur all the cases (H=15 mm, 20 mm and 30 mm). The peak augmentation of the distribution of the local non-dimensional temperature occurs in the downwash region near the point of minimum boundary-layer thickness.

An Experimental Study on the Effects of the Boundary Layer and Heat Transfer by Vortex Interactions ( I ) - On the common flow down - (와동간의 상호작용이 경계층 및 열전달에 미치는 영향에 관한 연구 ( I ) - Common flow down에 관하여 -)

  • Hong, Cheul-Hyun;Yang, Jang-Sik;Lee, Ki-Baik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.288-297
    • /
    • 2000
  • This paper describes the results of an experimental investigation of the flow characteristics and the heat transfer rate on a surface by interaction of a pair of vortices. The test facility consists of a boundary-layer wind tunnel with a vortex introduced into the flow by half-delta wings(vortex generators) protruding from the surface. In order to control the strength of the two longitudinal vortices, the angles of attack of the vortex generators are varied from 20 degree to 45 degree, but spacings between the vortex generators are fixed to 4 cm. The 3-dimensional mean velocity downstream of the vortex generators is measured by a five-hole pressure probe, and the hue-capturing method using the thermochromatic liquid crystals has been used to provide the local distribution of the heat transfer coefficient. By using the method mentioned above, the following conclusions are obtained from the present experiment. The boundary layer is thinned in the regions where the secondary flow is directed toward the wall and thickened where it is directed away from the wall. The peak augmentation of the local heat transfer coefficient occurs in the downwash region near the point of minimum boundary-layer thickness. Streamwise distributions of averaged Stanton number on the measurement planes show very similar trends for all the cases(${\beta}=20^{circ},\;30^{\circ}\;and\;45^{\circ}$).

An Experimental Study on the Effect of Fluid Flow and Heat Transfer Characteristics by the Longitudinal Vortices (종방향 와동이 유체유동 및 열전달 특성에 미치는 영향에 관한 실험적 연구)

  • 양장식;김은필
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.9
    • /
    • pp.843-852
    • /
    • 2000
  • The flow characteristics and the heat transfer rate on a surface by interaction of a pair of vortices were studied experimentally. The test facility consisted of a boundary-layer wind tunnel with a vortex introduced into the flow by half-delta winglet protruding from the surface. In order to control the strength of the longitudinal vortices, the angles of attack of the vortex generators were varied from $\pm20\;degree\;to\;\pm45$ degree, but spacings between the vortex generators were fixed to 4 cm. The 3-dimensional mean velocity measurements were made using a five-hole pressure probe. Heat transfer measurements were made using the thermochromatic liquid to provide the local distribution of the heat transfer coefficient. By using the method mentioned above, the following conclusions were obtained from the present experiment. The boundary layer was thinned in the regions where the secondary flow was directed toward the wall and thickened where it was directed away from the wall. The peak augmentation of the local heat transfer coefficient occurred in the downwash region near the point of minimum boundary-layer thickness.

  • PDF

Numerical Analysis on the Flow Field and Heat Transfer Characteristics of Longitudinal Vortices in Turbulent Boundary Layer - On the Common Flow Down - (3차원 난류경계층 내에 존재하는 종방향 와동의 유동장 및 열전달 특성에 관한 수치해석(I) - Common Flow Down에 관하여 -)

  • Yang Jang-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.789-798
    • /
    • 2005
  • This paper is a numerical study concerning how the interactions between a pair of the vortices effect flow field and heat transfer. The flow field (common flow down) behind a vortex generator is modeled by the information that is available from studies on a half-delta winglet. Also, the energy equation and the Reynolds-averaged Wavier-Stokes equation for three-dimensional turbulent flows, together with a two-layer turbulence model to resolve the near-wall flow, are solved by the method of AF-ADI. The present results predict that the boundary layer is thinned in the regions where the secondary flow is directed toward the wall and thickened where it Is directed away from the wall. Although some discrepancies are observed near the center of the vortex core, the overall performance of the computational model is found to be satisfactory.

Vortex behavior in the inertial flow of viscoelastic fluids past a confined cylinder

  • Kim, Ju Min;Kim, Chongyoup;Chung, Changkwon;Ahn, Kyung Hyun;Lee, Seung Jong
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.3
    • /
    • pp.117-128
    • /
    • 2004
  • The effect of molecular parameters on the steady vortex behaviors in the inertial viscoelastic flow past a cylinder has been investigated. FENE-CR model was considered as a constitutive equation. A recently developed iterative solution method (Kim et al., (in press)) was found to be successfully applicable to the computation of inertial viscoelastic flows. The high-resolution computations were carried out to understand the detailed flow behaviors based on the efficient iterative solution method armed with ILU(0) type pre-conditioner and BiCGSTAB method. The discrete elastic viscous split stress-G/streamline upwind Petrov Galerkin (DEVSS-G/SUPG) formulation was adopted as a stabilization method. The vortex size decreased as elasticity increases. However, the vortex enhancement was also observed in the case of large extensibility, which means that the vortex behavior is strongly dependent upon the material parameters. The longitudinal gradient of normal stress was found to retard the formation of vortex, whereas the extensional viscosity played a role in the vortex enhancement. The present results are expected to be helpful for understanding the inertial vortex dynamics of viscoelastic fluids in the flow past a confined cylinder.

Numerical Analysis on the Heat Transfer Enhancement by Modified Lovour Fin (개량 루버핀에 의한 열전달 성능향상에 관한 연구)

  • Chung, Jae-Dong;Park, Byung-Kyu;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.408-413
    • /
    • 2001
  • Numerical analysis on the three-dimensional laminar flows (Re=1000) and heat transfer in a rectangular channel with punched longitudinal vortex generator have been conducted to explore the heat transfer enhancement and the combined effect of the angle of attack ${\alpha}$ and the lovour angle ${\beta}$. Rectangular winglets have been used as vortex generators. Velocity and temperature fields and spanwise averaged Nu and friction factor were presented. Enhancement of heat transfer and flow loss penalty are evidenced. The results show performance characteristics allowing a reduction in heat transfer surface area of 62% for fixed heat duty and for fixed pumping power compared with that of channel flow without vortex generator. However, adding lovour angle to the vortex generator shows no positive effect on the heat transfer enhancement.

  • PDF

Heat Transfer Enhancement for Fin-Tube Heat Exchanger Using Vortex Generators

  • Yoo, Seong-Yeon;Park, Dong-Seong;Chung, Min-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.109-115
    • /
    • 2002
  • Vortex generators are fabricated on the fin surface of a fin-tube heat exchanger to augment the convective heat transfer. In addition to horseshoe vortices formed naturally around the tube of the fin-tube heat exchanger, longitudinal vortices are artificially created on the fin surface by vortex generators. The purpose of this study is to investigate the local heat transfer phenomena in the fin-tube heat exchangers with and without vortex generators, and to evaluate the effect of vortices on the heat transfer enhancement. Naphthalene sublimation technique is employed to measure local mass transfer coefficients, then analogy equation between heat and mass transfer is used to calculate heat transfer coefficients. Experiments are performed for the model of fin -circular tube heat exchangers with and without vortex generators, and of fin-flat tube heat exchangers with and without vortex generators. Average heat transfer coefficients of finn-flat tube heat exchanger without vertex generator are much lower than those of fin-circular tube heat exchanger. On the other hand, fin-flat tube heat exchanger with vortex generators has much higher heat transfer value than conventional fin-circular tube heat exchanger At the same time, pressure losses for four types of heat exchanger is measured and compared.

Local and Overall Heat Transfer Characteristics of Fin- Flat Tube Heat Exchanger with Vortex Generators

  • Yoo, Seong-Yeon;Chung, Min-Ho;Park, Dong-Seong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.3
    • /
    • pp.150-157
    • /
    • 2003
  • Local and overall heat transfer characteristics of fin-flat tube heat exchangers with and without vortex generators were investigated. Local heat transfer coefficients were measured with the heat exchanger model using naphthalene sublimation technique. In case of a fin-flat tube heat exchanger without vortex generators, only the horseshoe vortices formed around tubes augment the heat transfer. On the other hand, longitudinal vortices created artificially by vortex generators additionally enhance heat transfer in case of a fin-flat tube heat exchanger with vortex generators. Overall heat transfer coefficients were measured with the prototypes of the fin-flat tube heat exchanger with and without vortex generators in a wind tunnel and results were compared with those of a fin-circular tube heat exchanger with wavy fin. Friction losses for heat exchangers were also measured and compared. The fin-flat tube heat exchanger with vortex generators is found to be more effective than the fin-circular tube heat exchanger with wavy fin.

Numerical Study on the Heat Transfer Enhancement of Trapezoidal Vortex Generator in a Rectangular Channel (사각채널에서 사다리꼴 와류발생기에 의한 열전달 촉진에 대한 수치해석)

  • Park, T.H.;Lee, S.R.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.852-857
    • /
    • 2018
  • Vortex Generators are used in heat exchanger to enhance the heat transfer of air side. 3-D numerical analysis is performed on heat transfer characteristics of a channel with trapezoidal vortex generator. We investigate the effects of vortex generators with two different inclined angles to flow direction which are forward and backward vortex generators. The thermal hydraulic performance such as Nu and pressure drop, is compared quantitatively. The results show that vortex generator enhances the heat transfer by developing boundary layers and secondary flow in the downstream. The downwash flow region corresponds to the maximum Nu, while the upwash flow region corresponds to Nu minimum. In the view of the heat transfer characteristics, FVG is better than BVG. However, when flow is turbulent as Re increases, the pressure drop for FVG is higher than that for BVG.