• Title/Summary/Keyword: Longitudinal strength

Search Result 814, Processing Time 0.023 seconds

Development of Tomotherapy couch device capable of yaw-directional correction (Yaw방향의 보정이 가능한 Tomotherapy couch device의 개발)

  • Chae, Moon Ki;Kwon, Dong Yeol;Sun, Jong Lyool;Choi, Byung Ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.139-151
    • /
    • 2018
  • Objectives : A self-made "Tomotherapy couch device" capable of correcting the Yaw direction was fabricated and evaluated for its usefulness. Materials and Methods : "Tomotherapy couch device" capable of correcting the Yaw direction is made of rigid fibreboard with a flexural strength of $200kg/cm^2$. CBCT Image from Novalis Tx and Iso-Align Phantom from MED-TEC were used to evaluate the physical accuracy. The treatment plan was designed using Accuray $Precision^{TM}$ and In House Head and Phantom. Accuray $PrecisionART^{TM}$ and $Precision^{TM}$ was used to evaluate dose. Results : Evaluation results, the self-fabricated device accurately corrected the setup error, Target dose was within 95 %~107 % of all. In order to directly evaluate the OAR dose according to the Yaw change, the absolute dose was measured. As a result, when the error in the Yaw direction was $3^{\circ}$, the specific OAR showed a maximum difference of 18.4 %. Conclusion : "Tomotherapy couch device" capable of correcting the Yaw direction can be manufactured at a lower cost compared to the effect, and it can prevent the patient's MVCT image dose for re-imaging. Accurate radiation therapy without errors can be performed.

  • PDF

An Empirical Analysis of Accelerator Investment Determinants: A Longitudinal Study on Investment Determinants and Investment Performance (액셀러레이터 투자결정요인 실증 분석: 투자결정요인과 투자성과에 대한 종단 연구)

  • Jin Young Joo;Jeong Min Nam
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.4
    • /
    • pp.1-20
    • /
    • 2023
  • This study attempted to identify the relationship between the investment determinants of accelerators and investment performance through empirical analysis. Through literature review, four dimensions and 12 measurement items were extracted for investment determinants, which are independent variables, and investment performance was adjusted to the cumulative amount of subsequent investment based on previous studies. Performance data from 594 companies selected by TIPS from 2017 to 2019, which are relatively reliable and easy to secure data, were collected, and the subsequent investment cumulative attraction amount, which is a dependent variable, was hypothesized through multiple regression analysis three years after the investment. As a result of the study, 'industrial experience years' in the characteristics of founders, 'market size', 'market growth', 'competitive strength', and 'number of patents' in the characteristics of products and services had a significant positive (+) effect. The impact of independent variables on dependent variables was most influenced by the competitive strength of market characteristics, followed by the number of years of industrial experience, the number of patents, the size of the market, and market growth. This was different from the results of previous studies conducted mainly on qualitative research methods, and in most previous studies, the characteristics of founders were the most important, but the empirical analysis results were market characteristics. As a sub-factor, the intensity of competition, which was the subordinate to the importance of previous studies, had the greatest influence in empirical analysis. The academic significance of this study is that it presented a specific methodology to collect and build 594 empirical samples in the absence of empirical research on accelerator investment determinants, and created an opportunity to expand the theoretical discussion of investment determinants through causal research. In practice, the information asymmetry and uncertainty of startups that accelerators have can help them make effective investment decisions by establishing a systematic model of experience-dependent investment determinants.

  • PDF

Effects of Wood Particles and Steel Wire Compositions on Physical and Mechanical Properties of the Boards (목재(木材)파아티클과 철선(鐵線) 복합체(複合體)가 보오드의 물리적(物理的) 및 기계적(機械的) 성질(性質)에 미치는 영향(影響))

  • Park, Heon;Lee, Pill-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.3-44
    • /
    • 1986
  • In order to obtain the basic physical and mechanical properties of steel wire reinforced particleboard, particleboards were formed with large particles through 2.11 mm (12 meshes) and retained on 1.27mm (20 meshes) sieves and small particles through 1.27mm (20 meshes) and retained on 0.42mm (60 meshes) sieves from the plywood mill wastes of meranti (Shorea spp.) in the form of pallmanchips, applying urea-formaldehyde resin as an adhesive on the particle surface in 10 percent on the oven dried weight of particles, and arranging steel wires of 1mm in diameter 5,10,15,20, and 25mm in longitudinal and transverse direction with crossing in the mid of the board depth in single layer boards, 10mm in longitudinal or transverse direction without crossing in two layers and 10mm in longitudinal and transverse directions with and without crossing in three steel wire layers boards. The stepwise 9-minutes-multi-pressing schedule in 5 minutes at 35 kgf/$cm^2$, 2.5 minutes at 25 kgf/$cm^2$. and 1.5 minutes at 15 kgf/$cm^2$ was applied for $300{\times}200{\times}13$mm board at the temperature of 160$^{\circ}C$ in a hot press. Specific gravity, thickness swelling, bending properties of modulus of rupture (MOR), modulus of elasticity(MOE), work to proportional limit, and work to ultimate load, internal bond (IB), and screw holding power(SHP) of the reinforced boards were analyzed on the wire openings and wire layers. The results obtained are summarized as follows; 1) In specific gravity, particleboards with large particles and small particles had higher value with more steel wire placements and more steel layers composition, 2) Particleboards with large particles in accordance with more steel wire liners composition gave very poor thickness swelling. 3) The mechanical properties of particleboards formed with large or small particles were reinforced with more steel wire layers. Therefore, bending strength was improved in modulus of rupture, modulus of elasticity, and work to ultimate load. Especiallv, particleboards with two or three steel wire layers showed the tension lamination effect when the steels in lower steel wire layer were oriented parallel to the board length. 4) The modulus of rupture, modulus of elasticity, and work to ultimate load in bending varied with opening area, distance of lengthwise wires multipled by distance of transverse wires. Particleboards formed with large particles resulted in higher value in modulus of rupture with 1.5-3 $cm^2$ opening area, 1-2cm distance between transverse wires, and 1.5-2.5cm distance between lengthwise wires. Particle boards formed with small particles showed higher value with 0.5-1.5$cm^2$ or 3.75-6.25 $cm^2$ opening area, 0.5 or 2.5cm distance between transverse wires. 5) In modulus of elasticity, particleboards formed with large particles with one steel wire layer suggested higher value with 5-3$cm^2$ opening area, 1-2.5cm distance between transverse wires and also 1-2.5 cm distance between lengthwise wires. Particleboards formed with small particles showed higher value with 0.75-1.25$cm^2$ or 3-6.25$cm^2$ opening area and 0.5 or 2.5cm distance between transverse wires. 6) Particleboards formed with large particles gaved higher value in work to ultimate load with 1-3$cm^2$ opening area. Particleboards formed with small particles showed increasing tendancy with decreasing opening area. 7) In internal bond and screw holding power, particleboards formed with large particles had increasing value in two and three steel wire layers compositions, but particleboards formed with small particles showed no difference. Particleboards formed with large particles containing one steel wire layer showed no difference in internal bond and screw holding power, and particleboards formed with small panicles containing one steel wire layer resulted in increasing value in internal bond and decreasing value in screw holding power in accordance with increase in opening area.

  • PDF

Design and Full Size Flexural Test of Spliced I-type Prestressed Concrete Bridge Girders Having Holes in the Web (분절형 복부 중공 프리스트레스트 콘크리트 교량 거더의 설계 및 실물크기 휨 실험 분석)

  • Han, Man Yop;Choi, Sokhwan;Jeon, Yong-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.235-249
    • /
    • 2011
  • A new form of I-type PSC bridge girder, which has hole in the web, is proposed in this paper. Three different concepts were combined and implemented in the design. First of all, a girder was precast at a manufacturing plant as divided pieces and assembled at the construction site using post-tensioning method, and the construction period at the site will be reduced dramatically. In this way, the quality of concrete can be assured at the manufacturing factory and concrete curing can be well controlled, and the spliced girder segments can be moved to the construction site without a transportation problem. Secondly, a numerous number of holes was made in the web of the girder. This reduces the self-weight of the girder. But more important thing related to the holes is that about half of the total anchorages can be moved from the girder ends into individual holes. The magnitude of negative moment developed at girder ends will be reduced. Also, since the longitudinal compressive stresses are reduced at ends, thick end diaphragm is not necessary. Thirdly, Prestressing force was introduced into the member through multiple stages. This concept of multi-stage prestressing method overcomes the prestressing force limit restrained by the allowable stresses at each loading stage, and maximizes the magnitude of applicable prestressing force. It makes the girder longer and shallower. Two 50 meter long full scale girders were fabricated and tested. One of them was non-spliced, or monolithic girder, made as one piece from the beginning, and the other one was assembled using post-tensioning method from five pieces of segments. It was found from the result that monolithic and spliced girder show similar load-deflection relationships and crack patterns. Girders satisfied specific girder design specification in flexural strength, deflection, and live load deflection control limit. Both spliced and monolithic holed web post-tensioned girders can be used to achieve span lengths of more than 50m with the girder height of 2 m.