• Title/Summary/Keyword: Longitudinal shrinkage

Search Result 70, Processing Time 0.026 seconds

Longitudinal Reinforcement Ratio for Performance-based Design of Reinforced Concrete Columns (철근콘크리트 기둥의 성능기반설계를 위한 주철근비)

  • Kim, Chang-Soo;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.187-197
    • /
    • 2010
  • The longitudinal reinforcement ratio for the performance-based design of columns was studied. Unlike the existing design codes using uniform minimum reinforcement ratio and effective stiffness for all columns, the longitudinal reinforcement ratio of columns was defined as the function of various design parameters. To evaluate the minimum reinforcement ratio, two conditions were considered: 1) prevention of passive yielding of compression re-bars due to the creep and shrinkage of concrete under sustained service loads; and 2) ultimate flexural strength greater than the cracking moment capacity to maintain the ductility of columns for earthquake design. In addition, the effective flexural stiffness of columns for structural analysis was determined according to the longitudinal reinforcement ratio. The design method addressing the three criteria was proposed. The proposed method was applied to a design example.

Variation of a Triangular Pattern Shape due to Shrinkage in the Repeated UV Imprint Process (반복적인 UV 임프린트 공정에서 수축에 따른 삼각 단면을 가진 패턴의 형상 변화)

  • Jeong, Jiyun;Choi, Su Hyun;Cho, Young Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.7
    • /
    • pp.67-73
    • /
    • 2020
  • Shrinkage is inevitable in the curing of resins during the nanoimprint process. The degree of shrinkage that occurs as the resin transforms from a viscous liquid to solid differs depending on the type of resin. However, if the cured material is repeatedly cured using the same material, constant shrinkage can be confirmed. In this study, the pattern of change was observed by repeatedly performing the nanoimprint process using a resin with a constant shrinkage rate. The observed pattern for the change of shape was made using a triangular pyramid-shaped aluminum master mold and a flexible replica mold made from the master. Shrinkage that results from the nanoimprint process occurs linearly in the longitudinal direction of the pattern and can be predicted by simple calculations. The change of the pattern due to shrinkage occurred as expected. If the shrinkage rate remains constant, various patterns can be manufactured with high accuracy by correcting these changes before producing a specific shape. This study confirms that the pattern of the desired angle can be obtained by performing the repeated imprint without having to manufacture a master mold.

Design of Shrinkage Margin for Thin Panel Welded Structure during Manufacturing Process

  • Lee D. J.;Shin S. B.
    • International Journal of Korean Welding Society
    • /
    • v.5 no.1
    • /
    • pp.44-52
    • /
    • 2005
  • The purpose of this study is to establish a design tool for the shrinkage margin of a deckhouse caused by welding and flame straightening. In order to do it, the effects of heat intensity and internal/external restraint condition on the shrinkage of the simple weldments were investigated, in order to identity the principal factors controlling shrinkage caused by welding process and flame straightening. Based on the results, predictive equations for longitudinal and transverse shrinkage at the welded structure were formulated as the function of heat intensity and in-plane rigidity. These equations were verified by comparing predicted results with the measured results at a panel structure of deckhouse.

  • PDF

Experimental study on long-term behavior of RC columns subjected to sustained eccentric load

  • Kim, Chang-Soo;Gong, Yu;Zhang, Xin;Hwang, Hyeon-Jong
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.289-299
    • /
    • 2020
  • To investigate the long-term behavior of eccentrically loaded RC columns, which are more realistic in practice than concentrically loaded RC columns, long-term eccentric loading tests were conducted for 10 RC columns. Test parameters included concrete compressive strength, reinforcement ratio, bar yield strength, eccentricity ratio, slenderness ratio, and loading pattern. Test results showed that the strain and curvature of the columns increased with time, and concrete forces were gradually transferred to longitudinal bars due to the creep and shrinkage of concrete. The long-term behavior of the columns varied with the test parameters, and long-term effects were more pronounced in the case of using the lower strength concrete, lower strength steel, lower bar ratio, fewer loading-step, higher eccentricity ratio, and higher slenderness ratio. However, in all the columns, no longitudinal bars were yielded under service loads at the final measuring day. Meanwhile, the numerical analysis modeling using the ultimate creep coefficient and ultimate shrinkage strain measured from cylinder tests gave quite good predictions for the behavior of the columns.

Short- and long-term analyses of shear lag in RC box girders considering axial equilibrium

  • Xiang, Yiqiang;He, Xiaoyang
    • Structural Engineering and Mechanics
    • /
    • v.62 no.6
    • /
    • pp.725-737
    • /
    • 2017
  • An analytical method considering axial equilibrium is proposed for the short- and long-term analyses of shear lag effect in reinforced concrete (RC) box girders. The axial equilibrium of box girders is taken into account by using an additional generalized displacement, referred to as the longitudinal displacement of the web. Three independent shear lag functions are introduced to describe different shear lag intensities of the top, bottom, and cantilever plates. The time-dependent material properties of the concrete are simulated by the age-adjusted effective modulus method (AEMM), while the reinforcement is assumed to behave in a linear-elastic fashion. The differential equations are derived based on the longitudinal displacement of the web, the vertical displacement of the cross section, and the shear lag functions of the flanges. The time-dependent expressions of the generalized displacements are then deduced for box girders subjected to uniformly distributed loads. The accuracy of the proposed method is validated against the finite element results regarding the short- and long-term responses of a simply-supported RC box girder. Furthermore, creep analyses considering and neglecting shrinkage are performed to quantify the time effects on the long-term behavior of a continuous RC box girder. The results show that the proposed method can well evaluate both the short- and long-term behavior of box girders, and that concrete shrinkage has a considerable impact on the concrete stresses and internal forces, while concrete creep can remarkably affect the long-term deflections.

On the Deformation Control of Ship's Thin Plate Block by Applying the Tensioning Method (장력법을 적용한 선체 박판블록의 변형감소 방안에 관한 실험연구)

  • Lee Joo-Sung;Kim Cheul-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.3 s.70
    • /
    • pp.103-108
    • /
    • 2006
  • It has been well appreciated that reducing weld-induced deformation as law as possible is important during fabrication for a more efficient production of blocks. The weld-induced deformation is more serious in thin plates than in thick plates because heat affect zone of thin plates is wider than that of thick plates and in addition internal and external constraints much more influence upon weld-induced deformation of thin plates. This paper deals with the application of the mechanical tensioning method to butt weld of thin plates to reduce the weld-induced deformation. In order to investigate the quantitative effect of tensioning method upon the reduction of angular deformation and shrinkage in longitudinal and transverse direction of weld line, butt welding test have been carried out for several thin plate specimens with varying plate thickness and magnitude of tensile load. From the present experimental study, it has been found that the tensioning method is very effective on reduction of weld-induced residual stress as well as weld-induced deformation.

On the Weld-Induced Deformation Control of Ship's Thin Plate Block (I) (선체 박판구조의 용접변형 제어에 관한 연구(I))

  • Lee, Joo-Sung;Kim, Cheul-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.5
    • /
    • pp.496-503
    • /
    • 2007
  • Although weld-induced deformation is inevitable in shipbuilding, it is important to reduce it as low as possible during fabrication for a more efficient production of ships' blocks. The weld-induced deformation is more serious in thin plates than in thick plates because heat affect zone of thin plates is wider than that of thick plates, and in addition internal and external constraints much more influence upon weld-induced deformation of thin plates. This paper deals with the application of the mechanical tensioning method to butt weld of thin plates to reduce the transverse and longitudinal deformation. in order to investigate the quantitative effect of tensioning method upon the reduction of angular deformation and shrinkage in longitudinal and transverse direction of weld line, butt welding test have been carried out for several thin plate specimens with varying plate thickness and magnitude of tensile load. Numerical simulation has been also carried out to compare the weld-induced deformation and residual stress. From the present study, it has been found that the tensioning method is very effective on reduction of weld-induced residual stress as well as weld-induced deformation.

Reduction of Drying Shrinkage Cracking of Box Culvert for Power Transmission with Shrinkage Reducing Agent (수축저감제 혼입에 따른 전력구 박스구조물의 건조수축균열 저감)

  • Woo, Sang-Kyun;Kim, Ki-Jung;Lee, Yun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.102-108
    • /
    • 2016
  • The purpose of this study is to examine the reduction effect of shrinkage reducing agent for drying shrinkage induced cracking and suggest the method of controlling the cracking in concrete box culvert for power transmission. Based on drying shrinkage cracking mechanism, it is necessary to perform the numerical analysis, which involves shrinkage reducing effect of shrinkage reducing agent. From the numerical results, it is found that cracking behavior for longitudinal direction and transverse direction due to differential drying shrinkage of box culvert can occur and the experimental observation of concrete cracks support the numerical predictions. The shrinkage reducing agent reduced the concrete cracking by 40~50%, which shows the methodology of controlling of drying shrinkage cracks in box culverts in real construction site.

A Study on the Prediction of Shrinkage and Residual Stress for the HY-100 Weldment Considering the Phase Transformation (상 변태를 고려한 HY-100강 용접부의 수축 및 잔류응력 예측에 관한 연구)

  • Lee, Hee-Tae;Shin, Sang-Beom
    • Journal of Welding and Joining
    • /
    • v.25 no.1
    • /
    • pp.42-48
    • /
    • 2007
  • For high performance and structural stability, application of high strength steel has continuously increased. However, the change of the base metal gives rise to problems with the accuracy management of the welded structure. It is attributed to the martensite phase transformation of the high strength low alloy steel weldment. The purpose of this study is to establish the predictive equation of transverse shrinkage and residual stress for the HY-100 weldment. In order to do it, high speed quenching dilatometer tests were performed to define a coefficient of thermal expansion(CTE) at the heating and cooling stage of HY-100 with various cooling rates. Uncoupled thermal-mechanical finite element(FE) models with CTE were proposed to evaluate the effect of the martensite phase transformation on transverse shrinkage and residual stresses at the weldment. FEA results were verified by comparing with experimental results. Based on the results of extensive FEA and experiments, the predictive equation of transverse shrinkage and longitudinal shrinkage force at the HY-100 weldment were formulated as the function of welding heat input/in-plane rigidity and welding heat input respectively.

Review on The Measurement of Wood Shrinkage (목재수축률 측정에 대한 총설)

  • Lee, So Sun;So, Won-Tek;Jeong, Gi Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.746-756
    • /
    • 2015
  • The goal of this study was to review the wood shrinkage published in Journal of The Korean Wood Science and Technology from 1976 to 2015. Previous studies reported that shrinkage from Larix kaempferi in the tangential, radial, longitudinal directions ranged from 4.21%-9.79%, 2.09%-4.67%, 0.17%-0.33%, respectively. When different drying methods including closed cylinder drying, oven drying, and room temperature drying were used, volumetric shrinkage of Dipterocarpus grandiflorus was different, ranging from 31.6% to 21.0%. With an increment of the drying temperature of $115^{\circ}C$, $120^{\circ}C$, $125^{\circ}C$, the shrinkage of Larix kaempferi did not show a consistent trend. When sample size of Pinus densiflora was increased from $20{\times}20{\times}20mm$ to $100{\times}100{\times}100mm$, the tangential, radial and volumetric shrinkage decreased 2.61%, 1.32%, 0.80%, respectively. When a caliper having a sensitivity of 0.01 mm was used to measure $20mm^3$ specimen from Cryptomeria japonica, the measurement error occurred 1.97% in the radial direction and 35.7% in the longitudinal direction. From the previous studies, wood shrinkage could be influenced by sample size, drying method and measurement technique.