• 제목/요약/키워드: Longitudinal section

검색결과 545건 처리시간 0.023초

Beams affected by corrosion influence of reinforcement placement in the cracking

  • Ortega, Nestor F.;Rivas, Irene E.;Aveldano, Raquel R.;Peralta, Maria H.
    • Structural Engineering and Mechanics
    • /
    • 제37권2호
    • /
    • pp.163-175
    • /
    • 2011
  • The results of experimental and numerical investigations on reinforced concrete beams, with different longitudinal rebars affected by corrosive processes are presented in this paper. Different diameters and/or different distributions of longitudinal rebars were employed keeping constant the total section in each analyzed case, (maintaining a constant stirrup diameter and distribution). The rebars were subjected to accelerated corrosion in the experimental study. Electrochemical monitoring of the process, periodic measuring of the cover cracking and gravimetry of the rebars were performed through the test. Some building recommendations are obtained in order to be considered by designers of concrete structures. The numerical simulation was carried out through the application of the Finite Element Method (FEM), employing plane models, and using linear-elastic material model. The cracking process was associated with the evolution of the tensile stresses that were originated. This numerical methodology allows the monitoring of the mechanical behavior until the beginning of the cracking.

Macro해석모델에 의한 RC교각의 내진 성능 평가 (Seismic Performance Evaluation of RC Bridge Piers by Macro Mathematical Model)

  • 이대형;박창규;김현준;정영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.207-210
    • /
    • 2005
  • The objective of this research is to evaluate of seismic performance for reinforced concrete bridge piers with lap splices of longitudinal reinforcement steels using predict of nonlinear hysteric behavior. For the purpose, analytical trilinear hysteretic model has been used to simulate the force displacement hysteretic curve of RC bridge piers under repeated reversal loads. The moment capacity and corresponding curvature in the plastic hinge have been determined, and the enhanced hysteretic behavior model by five different kinds of branches has been proposed for modeling the stiffness variation of RC section under cyclic loading. The strength and stiffness degradation index are introduced to compute the hysteretic curve vary confinement steel ratio. In addition, the modified curvature factor has been introduced to forecast of seismic performance of longitudinal steel lap spliced and retrofitted specimens.

  • PDF

중심 축력을 받는 고강도 철근 콘크리트 기둥의 내력 및 연성에 관한 연구 (Strength and Ductility of High-Strength Reinforced Concrete Columns under Uniaxial Loads)

  • 이강건;이재연;김성수;이리형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1990년도 가을 학술발표회 논문집
    • /
    • pp.57-62
    • /
    • 1990
  • This paper is to study the effect of rectilinear confinement in high-strength concrete subjected to a monotonically increasing compressive axial loads. To investigate behavior of columns rectilinearly confined with lateral ties and longitudinal rebars, twelve specimens including two plain concrete specimens were tested. The main variables in this study are volumetric ratio of lateral ties, cistribution of lateral ties, yield strength of logitudinal steel, ratio of area of longitudinal steel to the area of cross section. The test results were not only compared with an empirical model for the stress-strain curve of rectilinearly confined high-strength concrete but also the existing model. The empirical model used calculating column capacity shows better agreement with the test results tham the existing model.

  • PDF

PSC 박스거더 교량부재의 횡방향 프리스트레싱에 따른 구조거동 실험연구 (An Experimental Study on Structural Behavior of Concrete Box Girder Member with Transverse Prestressing)

  • 오병환;최영철;최정선;이성철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.77-80
    • /
    • 2004
  • In bridge deck systems, deflections and cracking can be controlled by longitudinal and transverse prestressing, There are some benefits, longitudinal cracking control, the thickness reduction of deck slab, the widening of deck width and the reduction of the cross section area, in transversely post-tensioned concrete box girder bridges. However, it has been not sufficient to study the structural behaviors of transversely post-tensioned concrete box girder. Therefore, It is needed to predict the structural behaviors by prestressing and static loading. In this study, the analytical and experimental load tests are carried out to study the effect of transverse prestressing on concrete box girder. For these objectives, four test specimens are fabricated with various tendon spacing and steel ratio of top slab. The analytical and experimental studies are performed to estimate effects of the prestressing and failure tests.

  • PDF

Experimental study on ultimate torsional strength of PC composite box-girder with corrugated steel webs under pure torsion

  • Ding, Yong;Jiang, Kebin;Shao, Fei;Deng, Anzhong
    • Structural Engineering and Mechanics
    • /
    • 제46권4호
    • /
    • pp.519-531
    • /
    • 2013
  • To have a better understanding of the torsional mechanism and influencing factors of PC composite box-girder with corrugated steel webs, ultimate torsional strength of four specimens under pure torsion were analyzed with Model Test Method. Monotonic pure torsion acts on specimens by eccentric concentrated loading. The experimental results show that cracks form at an angle of $45^{\circ}$ to the member's longitudinal axis in the top and bottom concrete slabs. Longitudinal reinforcement located in the center of cross section contributes little to torsional capacity of the specimens. Torsional rigidity is proportional to shape parameter ${\eta}$ of corrugation and there is an increase in yielding torque and ultimate torque of specimens as the thickness of corrugated steel webs increases.

Mechanical behavior of outer square inner circular concrete-filled dual steel tubular stub columns

  • Ding, Fa-xing;Wang, Wenjun;Liu, Xue-mei;Wang, Liping;Sun, Yi
    • Steel and Composite Structures
    • /
    • 제38권3호
    • /
    • pp.305-317
    • /
    • 2021
  • The mechanical behavior of the outer square inner circular concrete-filled dual steel tubular (SCCFT) stub columns under axial compression is investigated by means of experimental research, numerical analysis and theoretical investigation. Parameters such as diameter ratio, concrete strength and steel ratio were discussed to identify their influence on the mechanical properties of SCCFT short columns on the basis of the experimental investigation of seven SCCFT short columns. By establishing a finite element model, nonlinear analysis was performed to discuss the longitudinal and transverse stress of the dual steel tubes. The longitudinal stress characteristics of the core and sandwich concrete were also analyzed. Furthermore, the failure sequence was illustrated and the reasonable cross-section composition of SCCFT stub column was proposed. A formula to predict the axial load capacity of SCCFT stub column was advanced and verified by the results from experiment and the finite element.

비내진 상세 기존 RC 교각의 비선형 거동특성 및 내진성능 (Nonlinear Behavior Characteristics and Seismic Performance of the Existing RC Piers without Seismic Detailing)

  • 김재관
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.327-334
    • /
    • 2000
  • The seismic performance evaluation of the existing non-seismic detailed RC piers has risen as urgent task for rational and cost-effective seismic retrofitting works as well as development of new seismic design concept. The scale model test has been conducted to investigate nonlinear behavior characteristics and the seismic performance of existing piers with lap-spliced longitudinal reinforcements in the plastic hinge zone which are of the solid circular and the hollow rectangular section. The lap splice in this zone is found to cause premature bond failure. The experimental results show very poor seismic performance of circular section pier but relatively large ductility of the rectangular one.

  • PDF

의복구성을 위한 임부체형의 종단적 연구 (A Longitudinal Study on the Body Form of Pregnant Women for Garment Designs)

  • 나미향;오희선;이연순
    • 한국의류학회지
    • /
    • 제18권5호
    • /
    • pp.628-636
    • /
    • 1994
  • One vertical (medianus) and six horizontal (chest, bust, below bust, waist, abdomen and hip) sections of nine healthy pregnant women were examined every month by siliding gauge method during the period from 3rd to loth monthes of pregnancy. In the body changes along the passing months of pregnancy, which were observed by a follow·up measurement, there was little change on the posterior line when viewed using a vertical cross section. On the contrary, there was a great deal of increase on the anterior median line. Particularly, the degree of protrusion was great in the waist and ubilicus area due to pregnancy. At early pregnancy the distance from front to back is much shorter than side to side, however, as pregnancy progressed the front to back distance, on a horizontal cross section, is almost equal to the side to side distance.

  • PDF

SRC 합성교각의 준정적 실험 (Quasi-Static Tests on SRC Composite Columns)

  • 심창수;정영수;정인근;민진;한정훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.299-302
    • /
    • 2005
  • This study deals with the quasi-static tests on steel reinforced concrete composite columns with single embedded steel or multiple members. For the design of bridge piers, the composite section needs to have low steel ratio for cost savings because the dimension of the pier section is usually large. There is lack of design guidelines for these composite columns with low steel ratio, but the design provisions for the normal reinforced concrete column can be used for the design because of the low steel ratio. It is necessary to provide the design provisions in terms of the strength limit state and seismic performance by the detail requirements on the longitudinal steel and the transverse steel. The test parameters in this study were determined considering the current design provisions on RC columns. Through the quasi-static tests, the seismic performance of the composite columns were discussed.

  • PDF

회전 외팔보의 단면 형상 최적화 (Shape Optimization of the Cross-section of a Rotating Cantilever Beam)

  • 조정은;유홍희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.746-751
    • /
    • 2003
  • When a cantilever beam rotates about the axis perpendicular to its longitudinal axis, its natural frequencies vary. This phenomenon which is caused by centrifugal inertia forces is often referred to as the stiffening effects. Since the variation of natural frequencies often creates critical problems for the rotating structures, it is necessary to control the variation of natural frequencies. As the cross section of a rotating cantilever beam varies, natural frequencies can be changed. The thickness and the width of the cantilever beam are assumed to be cubic spline functions in the present work. An optimization method is employed to find the optimal thickness and width of the rotating beam. This result can be used for the design of rotating structures such as turbine and helicopter blades.

  • PDF