• Title/Summary/Keyword: Longitudinal member

Search Result 110, Processing Time 0.019 seconds

The Ductile Behavior Test of Ultra High Performance Fiber Reinforced Concrete Rectangular Beam by the Combination of the Fiber and Group of Reinforcing Bars (강섬유와 철근집합체 조합에 의한 초고강도 섬유보강 콘크리트 직사각형보의 연성거동에 대한 실험)

  • Han, Sang-Mook;An, Jin-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.139-148
    • /
    • 2015
  • The purpose of this paper is to induce the ductile behavior of the UHPFRC member after the peak load by using the bundle of longitudinal reinforcing bar as a substitute for steel fiber. Experiments on the flexural behavior of the Ultra High Performance Concrete rectangular beam with the combination of the steel fiber and longitudinal reinforcing bar were carried out. The volume fractions of steel fiber are 0%, 0.7%, 1%, 1.5%, 2% and the reinforcement ratios of longitudinal reinforcing bar which induce the ductile behavior are 0.0036, 0.016, 0.028 and 0.036. 15 UHPC beams were made with the combination of these test factors. Not only steel fiber but also bundle of longitudinal reinforcing bar has the effect to induce ductile behavior of UHPC structural member. The combination of 0.7% volume fraction of steel fiber and 0.028 reinforcement ratio showed the most economic combination. The relationship of load-deflection, strain variation of the concrete and the crack pattern indicate the usefulness of the bundle of the longitudinal bar which has small diameter with close arrangement each other.

A Study on the Strengthening of Side Structure Against Tug Push Loads (Tug Push 구조보강 방안 연구)

  • Kwon, Oh-Seok;Kim, Doe-Hyun;Ryu, Hong-Ryeul
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2009.09a
    • /
    • pp.65-70
    • /
    • 2009
  • In case that tug boat pushes side structures of other large vessels to maneuver, it is required that contacted side structures of the maneuvered vessels have enough structural safety against tug push loads. The objective of this study is to evaluate the structural effect of carling which is installed between side longitudinal stiffeners. A comparative study of side structures with carling and without carling is performed to evaluate the effect of carling member by both FE analysis. According to the result, it is found that the carlings play effective role in the strength of side plates and side longitudinal stiffeners against tug push loads.

  • PDF

Compressive Ultimate Strength Analysis of Plates with Initial Imperfections (초기결함(初期缺陷)을 갖는 평판(平板)의 압축최종강도해석(壓縮最終强度解析))

  • J.S.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.22 no.1
    • /
    • pp.31-37
    • /
    • 1985
  • In ship's structure, deck and bottom plate are main strength member subjected to the inplane load due to longitudinal bending, i.e. tensile and/or compressive load. The deck and bottom plate are subdivided into many plate members by stiffeners and girders longitudinally and transversely. Since the plate members are thin, it is likely to be collapsed under compressive load, and when we consider the local strength of deck and bottom, the plate members play an important role in the longitudinal strength. Therefore the precise analysis of their compressive ultimate strength is required for the optimal design of ship's structures. In this paper, the modified analytical method using the incremental form of principle of virtual displacement is introduced to determine the compressive ultimate load of plate members. The results by the present method is satisfactory, and the present method is more effective and economical than the finite element method.

  • PDF

An Experimental Study on Structural Behavior of Concrete Box Girder Member with Transverse Prestressing (PSC 박스거더 교량부재의 횡방향 프리스트레싱에 따른 구조거동 실험연구)

  • Oh Byung Hwan;Choi Young Cheol;Choi Jung Sun;Lee Seong Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.77-80
    • /
    • 2004
  • In bridge deck systems, deflections and cracking can be controlled by longitudinal and transverse prestressing, There are some benefits, longitudinal cracking control, the thickness reduction of deck slab, the widening of deck width and the reduction of the cross section area, in transversely post-tensioned concrete box girder bridges. However, it has been not sufficient to study the structural behaviors of transversely post-tensioned concrete box girder. Therefore, It is needed to predict the structural behaviors by prestressing and static loading. In this study, the analytical and experimental load tests are carried out to study the effect of transverse prestressing on concrete box girder. For these objectives, four test specimens are fabricated with various tendon spacing and steel ratio of top slab. The analytical and experimental studies are performed to estimate effects of the prestressing and failure tests.

  • PDF

Experimental study on ultimate torsional strength of PC composite box-girder with corrugated steel webs under pure torsion

  • Ding, Yong;Jiang, Kebin;Shao, Fei;Deng, Anzhong
    • Structural Engineering and Mechanics
    • /
    • v.46 no.4
    • /
    • pp.519-531
    • /
    • 2013
  • To have a better understanding of the torsional mechanism and influencing factors of PC composite box-girder with corrugated steel webs, ultimate torsional strength of four specimens under pure torsion were analyzed with Model Test Method. Monotonic pure torsion acts on specimens by eccentric concentrated loading. The experimental results show that cracks form at an angle of $45^{\circ}$ to the member's longitudinal axis in the top and bottom concrete slabs. Longitudinal reinforcement located in the center of cross section contributes little to torsional capacity of the specimens. Torsional rigidity is proportional to shape parameter ${\eta}$ of corrugation and there is an increase in yielding torque and ultimate torque of specimens as the thickness of corrugated steel webs increases.

A Study on the Analysis of PSC Box Girder Bridge Considering Construction Stage in Box Section (시공단계를 고려한 콘크리트-콘크리트 합성형 PSC 박스거더 교량의 해석)

  • 김영진;김병석;강재윤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.694-700
    • /
    • 1998
  • PSC box bridge by MSS construction method may not be set at cross section at one step. Web and bottom flange(U member) would be set at first, top flange will be set later with a time lag. In this case, U member and top flange concrete have different strain history. As two different aged section behaves as the composite section, there would happen the redistribution of stress. This is come from time-dependent strain characteristics of concrete itself. In this study, two models are considered, one with considering the set time of cross section and the other without. By performing longitudinal analysis of two models on considering construction stage, the stress differences of two are compared. As the analysis results show a considerable differences in the stresses of cross section between two models, the set time of cross section is needed for rational design f PSC box girder bridge.

  • PDF

A Study on the Behavior of Composite PSC Box Girder High-speed Railway Bridges (고속전철 PSC 박스거더 교량의 합성거동에 관한 연구)

  • 김영진;김병석;강재윤
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.54-60
    • /
    • 1998
  • PSC box bridges by MSS construction method in high-speed railway may not be cast in place at one step. Web and bottom flange(U member) in the cross section are cast in place at first, then top flange will be cast in place later with some time lag. In this section, stress distributions of U member and top flange are different with those in generally complete cast in place cross section. In the composite section composed of two different aged members, the redistribution of stresses takes place. This results from time-dependent strain characteristics of concrete and the effects of forces applied at the various stages. For comparison in the present paper, two models, one with the composite cross section and the other with generally complete cast in place cross section, are analyzed. The longitudinal stress differences of two models on considering construction stages are compared. As the analysis results show the considerable differences in the stresses of cross section between two models, the composition of cross section is considered for rational design of PSC box girder bridge.

  • PDF

Study on Relationship of Flexural Moment-Curvature Based on Bond Property of Reinforced Concrete Member (철근콘크리트 부재의 부착특성을 고려한 휨모멘트-곡률 관계에 관한연구)

  • 장일영
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.4
    • /
    • pp.97-106
    • /
    • 1991
  • The object of this study is to propose the Flexural moment-curvature relationship based on the bond property between concrete and steel for noncracking zone, to evaluate the flexural displacement of reinforced concrete member. The bond-slip relationship and the strain hardening effect of steel were taken into consideration in order to evaluate the spacing of the cracks and the curvature distribution. Calculated curvature distribution along the longitudinal axis was transformed into equivalent curvature distribution. The flexural displacement was calculated by means of double integrals of the equivalent curvature. Furthermore, 34 beams were tested in order to verify the proposed procedure Calculated values agreed well with the experimental data, and so it is pointed out that proposed method is widely acceptable for the practical evaluation of flexural displacement of reinforced concrete member.

An Analytical Study on the Shear Capacity of Reinforced Concrete Member with Small Shear Span Ratio (전단스팬비가 작은 철근콘크리트 부재의 전단내력평가에 관한 해석적 연구)

  • 강석화
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.5
    • /
    • pp.193-202
    • /
    • 1994
  • In this study, an equation for modelling the shear strength of reinforced concrete member with web reinforcement is proposed. Although the general formulas for shear strength of reinforced concrete member with small a /d are obtained based on the experimental results, the proposed equation herein is derived from lower bound theorem of limit analysis. The proposed model takes into account arch mechanism and truss mechanism. And ir provides the values of divided shear strength ratio of each mechanism as well as visual understanding of the mechanism on how the given load is transfered to the support. Also, the model takes into account the effect of a /d. longitudinal reinforcement ratio, and web reiriforcement ratio quantitively. Based on the comparisons of the result of this model with previous, test results, it shows good agreements.

An Experimental Study of Reinforced Concrete Beams with Closely-Spaced Headed Bars

  • Lam, Kah Mun;Kim, Woo-Suk;Van Zandt, Michael;Kang, Thomas H.K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.2
    • /
    • pp.77-85
    • /
    • 2011
  • The use of headed bars as opposed to standard 90- or 180-degree hooked bars in beam ends, beam-column joints or other steel congested areas for anchorage and bond has become more favorable due to the fact that steel congestion is often created by large bend diameters or crossties. This research mainly focuses on evaluating the code provisions regarding the use of headed bars. Nine simply supported rectangular concrete beams with headed longitudinal reinforcement were tested under a four-point monotonic loading system. The design clear spacing, which varies from 1.5 to 4.25 times the bar diameter, was the only parameter for the experimental investigation. The test results showed that the closely-spaced headed bars were capable of developing to full yield strength without any severe brittle concrete breakout cone or pullout failure. Bond along the bar was not sufficient due to the early loss of concrete integrity. However, the headed bars were effective for anchorage with no excessive moment capacity reduction. This implies that the clear spacing of about 2 times the bar diameter for headed bars may be reasonable to ensure the development of specified yield strength of headed bars and corresponding member design strength.