• 제목/요약/키워드: Longitudinal Steel

검색결과 708건 처리시간 0.023초

Long-term deflection of high-strength fiber reinforced concrete beams

  • Ashour, Samir A.;Mahmood, Khalid;Wafa, Faisal F.
    • Structural Engineering and Mechanics
    • /
    • 제8권6호
    • /
    • pp.531-546
    • /
    • 1999
  • The paper presents an experimental and theoretical study on the influence of steel fibers and longitudinal tension and compression reinforcements on immediate and long-term deflections of high-strength concrete beams of 85 MPa (12,300 psi) compressive, strength. Test results of eighteen beams subjected to sustained load for 180 days show that the deflection behavior depends on the longitudinal tension and compression reinforcement ratios and fiber content; excessive amount of compression reinforcement and fibers may have an unfavorable effect on the long-term deflections. The beams having the ACI Code's minimum longitudinal tension reinforcement showed much higher time-dependent deflection to immediate deflection ratio, when compared with that of the beams having about 50 percent of the balanced tension reinforcement. The results of theoretical analysis of tested beams and those of a parametric study show that the influence of steel fibers in increasing the moment of inertia of cracked transformed sections is most pronounced in beams having small amount of longitudinal tension reinforcement.

Experimental and numerical investigation of the seismic performance of railway piers with increasing longitudinal steel in plastic hinge area

  • Lu, Jinhua;Chen, Xingchong;Ding, Mingbo;Zhang, Xiyin;Liu, Zhengnan;Yuan, Hao
    • Earthquakes and Structures
    • /
    • 제17권6호
    • /
    • pp.545-556
    • /
    • 2019
  • Bridge piers with bending failure mode are seriously damaged only in the area of plastic hinge length in earthquakes. For this situation, a modified method for the layout of longitudinal reinforcement is presented, i.e., the number of longitudinal reinforcement is increased in the area of plastic hinge length at the bottom of piers. The quasi-static test of three scaled model piers is carried out to investigate the local longitudinal reinforcement at the bottom of the pier on the seismic performance of the pier. One of the piers is modified by increased longitudinal reinforcement at the bottom of the pier and the other two are comparative piers. The results show that the pier failure with increased longitudinal bars at the bottom is mainly concentrated at the bottom of the pier, and the vulnerable position does not transfer. The hysteretic loop curve of the pier is fuller. The bearing capacity and energy dissipation capacity is obviously improved. The bond-slip displacement between steel bar and concrete decreases slightly. The finite element simulations have been carried out by using ANSYS, and the results indicate that the seismic performance of piers with only increasing the number of steel bars (less than65%) in the plastic hinge zone can be basically equivalent to that of piers that the number of steel bars in all sections is the same as that in plastic hinge zone.

설계지진력 해석시의 철근콘크리트 사각단면교각의 항복유효강성 (Yielding Effective Stiffness of Rectangular RC Bridge Columns for Design Seismic Force)

  • 배성용;이재훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.941-946
    • /
    • 2001
  • The objectives of this study are to investigate effective stiffness of Rectangular reinforced concrete bridge columns. It is reasonable to use yielding effective stiffness of columns in seismic bridge design, especially in case that plastic hinges form at the bridge columns. In this study, the material nonlinear analysis was conducted for 3, 240 column sections of which variables were the concrete compressive stress, the steel yielding stress, the longitudinal steel location parameter, the longitudinal steel ratio, the axial load level, and the diameter of section. Based on the analytical results, an effective stiffness including two variables(longitudinal steel ratio and axial load ratio) was proposed by regression analyses, and it is compared with test results and the proposed equation for yielding effective stiffness of circular bridge columns.

  • PDF

프리스트레스트 합성상자형교의 거동 특성 (The Behavior of Prestressed Composite Box Girder)

  • 김주형;한택희;김종헌;강영종
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.591-596
    • /
    • 2001
  • In case of continuous steel box-girder bridges, the magnitude of the longitudinal tensile stress on concrete in internal support is larger than the tensile strength of concrete. In this paper, the parametric study was performed to present the effective magnitude of the longitudinal prestress for reducing the longitudinal tensile stress to decrease under the tensile strength of concrete. The parametric study is conducted with changing the steel box-girder section and the span length of bridge. Three dimensional finite element analyses are conducted with ABAQUS program. The behavior of the steel box-girder bridge with prestress is investigated through experimental works on a analogous steel box-girder bridge model, and their results are compared with those of analytical studies.

  • PDF

벌크헤드 플레이트로 보강된 강바닥판교의 종리브-횡리브 교차연결부의 최적상세 연구 (A Study for The Optimal Detail on Intersectin of Longitudinal-Transversal Rib in Orthotropic Steel Deck Bridge, Bulkhead Plate Reinforced.)

  • 공병승;윤성운
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.177-184
    • /
    • 2004
  • Orthotropic steel deck bridge has much advantages such as the light deadweight, so the construction of orthotropic steel deck is profitable for the long-span bridges Although the system has a lot of merits, it happens some damages by the traffic density and the fatigue cracks of welding. The cross-connection of longitudinal rib and transversal rib is one of the weakest at the fatigue. The secondary stresses which are from the out-plane deformation of transversal rib and the torsion of longitudinal rib make the topical stress concentration phenomenon. The Bulkhead Plate for prevention of this stress concentration phenomenon was applied by changing the orthotropic steel deck of Williamsburg bridge in USA. But, it is principle that a Bulkhead Plate is not established in the domestic design standard. Therefore, it is estimated that the study for installation of Bulkhead Plate is needed. This study with considering these circumstances proves efficiency of Bulkhead Plate and will be presented optimal design details through finite element analysis according to change the geometrical of Bulkhead Plate and the cross-connection area of longitudinal and transversal rib

  • PDF

축방향철근의 저주파 피로 모델 (Low Cycle Fatigue Model for Longitudinal Reinforcement)

  • 고성현;이재훈
    • 콘크리트학회논문집
    • /
    • 제22권2호
    • /
    • pp.273-282
    • /
    • 2010
  • 이 연구는 기존 모델에 대한 검증 및 국내에서 생산되고 있는 철근이 반복하중을 받는 경우의 파괴특성에 대한 적합한 모델을 제시하는 것을 목적으로 한다. 이 논문은 철근콘크리트 하부구조(파일과 교각)에 배근된 축방향철근에 대한 저주파 피로 거동에 대한 모델링을 다루었고, 전체 81개의 저주파 피로 실험 데이터에 기초하여 저주파 피로 모델을 제안하였다. 제안된 저주파 피로 모델을 적용하여 비선형해석 프로그램을 개발하였고 원형 기둥 실험체에 대한 6개의 실험 결과를 대상으로 비선형 해석을 적용하고 제안모델의 정확성을 평가하였다.

Axial behavior of the steel reinforced lightweight aggregate concrete (SRLAC) short columns

  • Mostafa, Mostafa M.A.;Wu, Tao;Liu, Xi;Fu, Bo
    • Steel and Composite Structures
    • /
    • 제39권5호
    • /
    • pp.583-598
    • /
    • 2021
  • The composite steel reinforced concrete (SRC) columns have been widely used in Structural Engineering due to their good performances. Many studies have been done on the SRC columns' performances, but they focused on the ordinary types with conventional configurations and materials. In this study, nine new types of steel reinforced lightweight aggregate concrete (SRLAC) short columns with cross-shaped (+shaped and X-shaped) steel section were tested under monotonically axial compressive load; the studied parameters included steel section ratio, steel section configuration, ties spacing, lightweight aggregate concrete (LWAC) strength, and longitudinal bars ratio. From the results, it could be found that the specimens with larger ties ratio, concrete strength, longitudinal bars ratio, and steel section ratio achieved great strength and stiffness due to the excellent interaction between the concrete and steel. The well-confined concrete core could strengthen the steel section. The ductility and toughness of the specimens were influenced by the LWAC strength, steel section ratio, and longitudinal bars ratio; in addition, larger ties ratio with smaller LWAC strength led to better ductility and toughness. The load transfer between concrete and steel section largely depends on the LWAC strength, and the ultimate strength of the new types of SRLAC short columns could be approximately predicted, referring to the codes' formulas of ordinary types of steel reinforced concrete (SRC) columns. Among the used codes, the BS-5400-05 led to the most conservative results.

Behavior of strengthened reinforced concrete coupling beams by bolted steel plates, Part 2: Evaluation of theoretical strength

  • Zhu, Y.;Su, R.K.L.
    • Structural Engineering and Mechanics
    • /
    • 제34권5호
    • /
    • pp.563-580
    • /
    • 2010
  • Composite beams using bolts to attach steel plates to the side faces of existing reinforced concrete (RC) coupling beams can enhance both their strength and deformability. The behavior of those composite beams differs substantially from the behavior of typical composite beams made up of steel beams and concrete slabs. The former are subjected to longitudinal, vertical and rotational slips, while the latter only involve longitudinal slip. In this study, a mixed analysis method was adopted to develop the fundamental equations for accurate prediction of the load-carrying capacity of steel plate strengthened RC coupling beams. Then, a rigid plastic analysis technique was used to cope with the full composite effect of the bolt group connections. Two theoretical models for the determination of the strength of medium-length plate strengthened coupling beams based on mixed analysis and rigid plastic methods are presented. The strength of the strengthened coupling beams is derived. The vertical and longitudinal slips of the steel plates and the shear strength of the anchor-bolt connection group is considered. The theoretical models are validated by the available experimental results presented in a companion paper. The strength of the specimens predicted from the mixed analysis model is found to be in good agreement with that from the experimental results.

Patch loading resistance prediction of plate girders with multiple longitudinal stiffeners using machine learning

  • Carlos Graciano;Ahmet Emin Kurtoglu;Balazs Kovesdi;Euro Casanova
    • Steel and Composite Structures
    • /
    • 제49권4호
    • /
    • pp.419-430
    • /
    • 2023
  • This paper is aimed at investigating the effect of multiple longitudinal stiffeners on the patch loading resistance of slender steel plate girders. Firstly, a numerical study is conducted through geometrically and materially nonlinear analysis with imperfections included (GMNIA), the model is validated with experimental results taken from the literature. The structural responses of girders with multiple longitudinal stiffeners are compared to the one of girders with a single longitudinal stiffener. Thereafter, a patch loading resistance model is developed through machine learning (ML) using symbolic regression (SR). An extensive numerical dataset covering a wide range of bridge girder geometries is employed to fit the resistance model using SR. Finally, the performance of the SR prediction model is evaluated by comparison of the resistances predicted using available formulae from the literature.

유한요소법에 의한 I형빔의 용접변형에 관한 연구 (A Study on Welding Deformation of I-Beam Steel Structure by FEM Method)

  • 석한길
    • Journal of Welding and Joining
    • /
    • 제21권5호
    • /
    • pp.561-567
    • /
    • 2003
  • For construction of I-beam steel structures, a fillet welding is one of the main manufacturing process. However, this welding process cause some problems associated with welding residual stress and welding deformation that are harmful to the safety of structures. Accordingly, this study clarified the creation mechanism of the welding deformation on I-beam steel structure from the experimental results given by the FEM method. To prevent or minimize the longitudinal bending deformation, first of all, a field supervision is necessary to observe the optimal groove design. Secondly, the welding order for cooling weld zone is needed.