• Title/Summary/Keyword: Longitudinal Force

Search Result 442, Processing Time 0.027 seconds

Study on The Estimation of Pipeline.Soil Interaction Force during Longitudinal Permanent Ground Deformation (종방향 영구지반변형 발생시 관.지반 상호작용력의 산정에 관한 연구)

  • 김태욱;임윤묵;김문겸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.114-122
    • /
    • 2002
  • The ASCE formula of lifeline.soil interaction force is the basis of semi-analytical relationship for buried pipelines subjected to longitudinal permanent ground deformation due to seismic induced liquefaction. However, since the ASCE formula has been developed based on the stiffness of non-liquefied region, it is needed to modify for the varied stiffness of liquefied region. With this object, the consideration of decreasing effect of soil stiffness in liquefied region is made: i.e. the spatial distributions of pipeline-soil interaction force in liquefied region. It means that the improved formula can reflect various patterns of permanent ground deformation more realistically. Through the comparative analyses using both the improved and ASCE formula, the applicability of the improved and the limitation of the ASCE formula and semi-analytical relationship are discussed. Also, relative influences of various parameters are evaluated for the clarification of behavior of pipeline subjected to longitudinal permanent ground deformation due to liquefaction.

  • PDF

Manufacturing Prototype and Characteristics Analysis of HB Type Linear Stepping Motor with Longitudinal Flux Machine (자속종방향 HB형 선형 스텝핑 전동기의 시작기 제작 및 특성해석)

  • 원규식;김동희;이상호;오홍석
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.10
    • /
    • pp.507-513
    • /
    • 2003
  • Nowadays, the necessity of linear position control motors have been increased in the various fields of the automatic control system. In the recently, the position control motor have disadvantaged in the efficiency and economical view since it require a conversion equipments such as belt and gear in order to convert rotary to linear motion. On the contrary, the hybrid linear stepping motor(HLSM) of linear motion digital actuator has a direct drive method that do not need mechanical conversion equipments. Therefore, the HLSM is better advantaged in the efficiency and economical view than a rotary stepping motor. In this paper, we have designed an optimum tooth shape and a permanent magnet value between the mover teeth by the 2D finite element method(FEM) to develop the HLSM with longitudinal flux machine(LFM) type, and calculated the thrust force and normal force. And we have manufactured the prototype of it. and have experimented the thrust force and the dynamic thrust characteristics of it.

Evaluation of long term behavior of steel plate girder bridges with precast concrete decks (프리캐스트 바닥판을 사용한 강합성거더교의 장기기동 해석)

  • Kim, Su-Hyun;Lee, Jong-Min;Cho, Sun-Kyu;Go, Dong-Choon
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1326-1331
    • /
    • 2006
  • The precast concrete deck is one of suitable solutions for replacement and new construction in urban area. However, the precast concrete deck could be a weak point of the steel plate girder bridges structurally due to the connections between precast panels in the longitudinal direction. Thereafter, it is necessary for improvement of durability and load carrying capacity to introduce the prestress force in the longitudinal direction Some cracks of connections at the precast concrete deck may be occurred due to live loads, the difference of temperature and long-term effects. The shrinkage and creep of concrete may significantly affect long-term behaviors which occur tensile stresses at the precast concrete deck of steel plate girder bridges. In this study, the time-dependant analysis program has been developed to determine the initial prestress force in the longitudinal direction considering loss of stress at the precast concrete deck. Also it has been estimated the initial prestress force by construction stages and shapes of girder.

  • PDF

A Mechanism Design of the 3-axial Road Simulator Linkage (3축 로드 시뮬레이터 링크부의 메카니즘 설계)

  • 정상화;류신호;김종태;이규태;장완식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.140-147
    • /
    • 2003
  • Full scale durability test in the laboratory is an essential of any fatigue life evaluation of components or structures of the automotive vehicle. Component testing is particularly important in today's highly competitive industries where the design to reduce weight and production costs must be balanced with the necessity to avoid expensive service failure. Generally, hydraulic road simulator is used to carry out the fatigue test and the vibration test. In this paper, the link unit which is able to realize the 3 element forces such as vertical force, lateral force, and longitudinal force that are applied to the road simulator is designed. Also, the designed link is verified with kinematics and inverse-kinematics. From this results, the designed factor satisfied the maximum stroke so that it satisfied the requirements for 3-axial road simulator.

Ice forces acting on towed ship in level ice with straight drift. Part II: Numerical simulation

  • Zhou, Li;Chuang, Zhenju;Bai, Xu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.2
    • /
    • pp.119-128
    • /
    • 2018
  • A numerical method is proposed to simulate level ice interaction with ship in transverse and longitudinal directions in time domain. A novel method is proposed to simulate non-symmetric transverse force in a stochastic way. On the basis of observations from the model tests, the simulation of longitudinal force combines the ice bending force acting on the waterline, submersion force below the waterline and ice friction forces caused by transverse force and ice floes rotation amidships. In the simulations the ship was fixed and towed through an intact ice sheet at a certain speed. The setup of the numerical simulation is similar to the ice tank setup as much as possible. The simulated results are compared with model tests data and the results show good agreement with the measurement.

Effective Stiffness of Circular Reinforced Bridge Columns (철근콘크리트 원형단면 교각의 유효강성)

  • 배성용;김준범;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.833-838
    • /
    • 2001
  • The objectives of this study are to investigate effective stiffness of circular reinforced bridge columns and to provide reasonable effective stiffness equations for seismic design to the current Korean Bridge Design Standard. The material nonlinear analysis was conducted for 5184 columns of which variables were the concrete compressive stress, the steel yielding stress, the longitudinal steel location parameter, the longitudinal steel ratio, the axial load level, and the diameter of section. The current Korean Bridge Design Standard generally used the gross section stiffness because of unclear provision, it may be non-conservative because of being evaluated greater design seismic force and less design displacement than those of the abroad provision. Therefore, the proposed effective stiffness equations include three variables such as : the longitudinal steel location parameter, the longitudinal steel ratio, and the axial load ratio. Two equations of effective stiffness are proposed which may be used for earthquake force estimation and for earthquake displacement estimation, respectively.

  • PDF

SEISMIC RESPONSE CHARACTERISTICS OF THE MULTI-SPAN CONTINUOUS GBRIDGE WITH SHEAR KEYS (전단키와 있는 다경간 연속교의 지진응답특성)

  • 이지훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.120-127
    • /
    • 1998
  • This paper deals with the dynamic responses of the multi-span continuous bridge with longitudinal shear keys. It is motivated by a need to understand the effects of longitudinal shear keys which may be used for the reduction of the longitudinal seismic force in continuous bridges. The results show that (1) The force reduction of fixed pier is proportional to the ratio of gap size and elastic maximum displacement of the bridges without shear keys ; (2) The thermal movement has little effect on the response of the continuous bridges with shear keys. Also the simplified equation is proposed to calculate the maximum response of the continuous bridges with longitudinal shear keys. The equation requires only the elastic analysis results of the bridge and the gap size between superstructure and shear keys.

  • PDF

Modelling the multi-physics of wind-blown sand impacts on high-speed train

  • Zhang, Yani;Jiang, Chen;Zhan, Xuhe
    • Wind and Structures
    • /
    • v.32 no.5
    • /
    • pp.487-499
    • /
    • 2021
  • The wind-blown sand effect on the high-speed train is investigated. Unsteady RANS equation and the SST k-ω turbulent model coupled with the discrete phase model (DPM) are utilized to simulate the two-phase of air-sand. Sand impact force is calculated based on the Hertzian impact theory. The different cases, including various wind velocity, train speed, sand particle diameter, were simulated. The train's flow field characteristics and the sand impact force were analyzed. The results show that the sand environment makes the pressure increase under different wind velocity and train speed situations. Sand impact force increases with the increasing train speed and sand particle diameter under the same particle mass flow rate. The train aerodynamic force connected with sand impact force when the train running in the wind-sand environment were compared with the aerodynamic force when the train running in the pure wind environment. The results show that the head car longitudinal force increase with wind speed increasing. When the crosswind speed is larger than 35m/s, the effect of the wind- sand environment on the train increases obviously. The longitudinal force of head car increases 23% and lateral force of tail increases 12% comparing to the pure wind environment. The sand concentration in air is the most important factor which influences the sand impact force on the train.

Equivalent Transverse Forces due to Longitudinal Prestressing of Box Girders (박스 거더의 종방향 프리스트레싱에 의한 횡방향 등가하중)

  • 양인환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.955-960
    • /
    • 2003
  • For box girders in which the longitudinal tendon is profiled in the inclined webs. longitudinal prestressing force will induce transverse effects as well as longitudinal ones. In this paper. the method estimating transverse effects induced by longitudinal prestressing is proposed. The transverse effects in the slabs of box girders due to longitudinal prestressing are investigated. Numerical analyses are carried out depending on the parameters such as web inclination and ratio of girder length to tendon eccentricity. Analysis results show that when only prestressing are considered the magnitude of stresses in the slabs of box grder is not so large. However. if the other stresses due to dead and live load et al. are superposed on these stresses. it may be that the longitudinal prestressing effects are significant.

  • PDF

Analytical Model Development of Longitudinal Railway Vehicle (철도차량의 종방향 통합해석모델 검토 및 개발)

  • Kwak Jae-Ho;Choi Kyung-Jin;Shin Yu-Jeong
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.383-386
    • /
    • 2005
  • An integrated analytical model which should have essential dynamics on the longitudinal railway vehicle is developed. The model consists of translational movement, rotational movement, brake actuator, adhesion force between rail and wheel, and brake friction force between wheel and pad. Thus, during the deceleration for stopping, a feedback controller controlling the brake cylinder pressure is designed to improve ride quality and to release friction problems. Through the developed model, the feasibility of controlling the cylinder pressure is verified for the better performances during braking.

  • PDF