• Title/Summary/Keyword: Longitude and Latitude

Search Result 338, Processing Time 0.028 seconds

Determination of Longitude and Latitude of Kongju National University Observatory (공주대학교 천문대의 경 ${\cdot}$ 위도 결정)

  • Kim, Hee-Soo
    • Journal of the Korean earth science society
    • /
    • v.21 no.4
    • /
    • pp.389-397
    • /
    • 2000
  • The longitude and latitude of the Kongju National University Observatory was determined by using TM-1A theodolite and GPS(model: 4000SSI, GPS 45). In the observation using theodolite TM-1A observed the meridian transit time(KST) and meridian altitude of the 2 stars, ${\alpha}$ Aur and ${\alpha}$ Boo. In the observation using GPS measured the longitude and latitude by receiving data of 6 GPS satellites. The longitude and latitude of the Kongju National University Observatory was determined to 127$^{\circ}$8'33'.16 and 36$^{\circ}$28'14'.20, respectively.

  • PDF

EFFECTS OF SOURCE POSITION ON THE DH-TYPE II CME PROPERTIES

  • Shanmugarju, A.;Moon, Y.J.;Cho, K.S.;Umapathy, S.
    • Journal of The Korean Astronomical Society
    • /
    • v.42 no.3
    • /
    • pp.55-60
    • /
    • 2009
  • The properties of SOHO/LASCO CMEs are subjected to projection effects. Their dependence on the source position is important to be studied. Our main aim is to study the dependence of CME properties on helio-longitude and latitude using the CMEs associated with type IIs observed by Wind/WAVES spacecraft (Deca-hecta metric type IIs - DH type IIs). These CMEs were identified as a separate population of geo-effective CMEs. We considered the CMEs associated with the Wind/WAVE type IIs observed during the period January 1997 - December 2005. The source locations of these CMEs were identified using their associated GOES X-ray flares and listed online. Using their locations and the cataloged properties of CMEs, we carried out a study on the dependence of CME properties on source location. We studied the above for three groups of CMEs: (i) all CMEs, (ii) halo and non-halo CMEs, and (iii) limb and non-limb CMEs. Major results from this study can be summarized as follows. (i) There is a clear dependence of speed on both the longitude and latitude; while there is an increasing trend with respect to longitude, it is opposite in the case of latitude. Our investigations show that the longitudinal dependence is caused by the projection effect and the latitudinal effect by the solar cycle effect. (ii) In the case of width, the disc centered events are observed with more width than those occurred at higher longitudes, and this result seems to be the same for latitude. (iii) The dependency of speed is confirmed on the angular distance between the sun-center and source location determined using both the longitude and latitude. (iv) There is no dependency found in the case of acceleration. (v) Among all the three groups of CMEs, the speeds of halo CMEs show more dependency on longitude. The speed of non-halo and non-limb CMEs show more dependency on latitude. The above results may be taken into account in correcting the projection effects of geo-effective CMEs.

Target Latitude and Longitude Detection Using UAV Rotation Angle (UAV의 회전각을 이용한 목표물 위경도 탐지 방법)

  • Shin, Kwang-Seong;Jung, Nyum;Youm, Sungkwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.1
    • /
    • pp.107-112
    • /
    • 2020
  • Recently, as the field of use of drones is diversified, it is actively used not only for surveying but also for search and rescue work. In these applications it is very important to know the location of the target or the location of the UAV. This paper proposes a target detection method using images taken from drones. The proposed method calculates the latitude and longitude information of the target by finding the location of the target by comparing it with the image to find the image taken by the drone. The exact latitude and longitude information of the target is calculated by calculating the actual distance corresponding to the distance of the image image using the characteristics of the pinhole camera. The proposed method through the actual experiment confirmed that the latitude and longitude of the target was accurately identified.

A Examination about Application Possibility of GPS in Determination of Astronomic Latitude and Longitude (천문 경위도 결정에 있어서 GPS의 응용 가능성 검토)

  • Kang, Joon-Mook;Oh, Won-Jin;Sohn, Hong-Gyoo;Lee, Young-Wook
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.3 no.2 s.6
    • /
    • pp.75-82
    • /
    • 1995
  • The calculation of astronomic latitude and longitude have been carried by astrolabe, theodolite. Conventional procedures to determine it require clear weather conditions, time high cost. So we need more effective method to decide them. The objective here is to present method to computate astronomic latitude and longitude by mixing GPS observation result and geodetic height. Also to decide geodetic height we used GPS/leveling, DMA(n=m=180) and OSU91A(n=m=360) methods. Compared to conventional procedures we could obtain astronomic latitude and longitude using GPS by $1{\sim}3'$ difference. If the precise geoid model of Korea will be developed, we can compute astronomic latitude and longitude effectively using GPS observation only.

  • PDF

GPS Surveying by A Point Positioning (일점측위에 의한 GPS측정)

  • Lee, Y.H.;Mun, D.Y.
    • Journal of Korean Port Research
    • /
    • v.12 no.1
    • /
    • pp.119-130
    • /
    • 1998
  • As a satellite positioning system, GPS is designed to provide the information on three dimensional position, velocity, and time all over the world. The purpose of this paper is to obtain what day has the best accuracy and what time has the best accuracy of measuring of forteen-twenty mimutes for effective using of MAGELLAN G.P.S NAV DLX-10 system. The result of measurement maximum deviation value from November, 1997 to March, 1998 that latitude deviation is 3' .75 and longitude deviation is 2' .1 And the result of measurement maximum deviation value during fourteen minutes of April 29, 1998 that latitude deviation is 3' .75 and longitude deviation is 1' .9. The result of measurement maximum deviation value during twenty minutes of May 6, 1998 that latitude deviation is 4' .75 and longitude deviation is 2' .1 and that is provid 3' .25, 4' .1 to May 13, 1998. So, we expect efficient use of horizontal position for navigation.

  • PDF

A Study on the Recurvature of Typhoons (태풍의 전향에 관한 연구)

  • Seol, Dong-Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.2
    • /
    • pp.140-146
    • /
    • 2015
  • This paper analyzed recurvature of typhoons by using 20 years meteorological data from 1992 to 2011. The results of this study are as follows. Yearly numbers of typhoon recurvature showed decreasing tendency gradually with decrease of numbers of typhoon occurrence. Typhoons recurvature were especially many between August and October and number of typhoon recurvature between July and October was occupied counts for 71 % of the whole typhoon recurvature. Life of typhoon recurvature in the North Pacific was most frequent at 5 days and 7 days. Mean life of typhoon recurvature was 6.8 days and this numerical value was longer than mean life of the whole typhoon including recuevatute and non-recurvature. Most of typhoons recurvature changed their direction north-eastwards in 20-34 degrees north latitude and 120-139 degrees east longitude. Mean latitude recurvature and longitude recurvature were 25 degrees north latitude and 135 degrees east longitude, respectively.

Trends of Upper Jet Streams Characteristics (Intensity, Altitude, Latitude and Longitude) Over the Asia-North Pacific Region Based on Four Reanalysis Datasets (재분석자료들을 활용한 아시아-북태평양 상층제트의 강도(풍속) 및 3차원적 위치 변화 경향)

  • So, Eun-Mi;Suh, Myoung-Seok
    • Atmosphere
    • /
    • v.27 no.1
    • /
    • pp.1-16
    • /
    • 2017
  • In this study, trends of upper jet stream characteristics (intensity, altitude, latitude, and longitude) over the Asia-North Pacific region during the recent 30 (1979~2008) years were analyzed by using four reanalysis datasets (CFSR, ERA-Int., JRA-55, MERRA). We defined the characteristics of upper jet stream as the averages of mass weighted wind speed, mass-flux weighted altitude, latitude and longitude between 400 and 100 hPa. Due to the vertical averaging of jet stream characteristics, our results reveal a weaker spatial variabilities and trends than previous studies. In general, the four reanalysis datasets show similar jet stream properties (intensity, altitude, latitude and longitude) although the magnitude and trends are slightly different among the reanalysis datasets. The altitude of MERRA is slightly higher than that of others for all seasons. The domain averaged intensity shows a weakening trend except for winter and the altitude of jet stream shows an increasing trend for all seasons. Also, the meridional trend of jet core shows a poleward trend for all seasons but it shows a contrasting trend, poleward trend in the continental area but equatorward trend in the Western Pacific region during summer. The zonal trend of jet core is very weak but a relatively strong westward trend in jet core except for spring and winter. The trends of jet stream characteristics found in this study are thermodynamically consistent with the global warming trends observed in the Asia-Pacific region.

A Missing Value Replacement Method for Agricultural Meteorological Data Using Bayesian Spatio-Temporal Model (농업기상 결측치 보정을 위한 통계적 시공간모형)

  • Park, Dain;Yoon, Sanghoo
    • Journal of Environmental Science International
    • /
    • v.27 no.7
    • /
    • pp.499-507
    • /
    • 2018
  • Agricultural meteorological information is an important resource that affects farmers' income, food security, and agricultural conditions. Thus, such data are used in various fields that are responsible for planning, enforcing, and evaluating agricultural policies. The meteorological information obtained from automatic weather observation systems operated by rural development agencies contains missing values owing to temporary mechanical or communication deficiencies. It is known that missing values lead to reduction in the reliability and validity of the model. In this study, the hierarchical Bayesian spatio-temporal model suggests replacements for missing values because the meteorological information includes spatio-temporal correlation. The prior distribution is very important in the Bayesian approach. However, we found a problem where the spatial decay parameter was not converged through the trace plot. A suitable spatial decay parameter, estimated on the bias of root-mean-square error (RMSE), which was determined to be the difference between the predicted and observed values. The latitude, longitude, and altitude were considered as covariates. The estimated spatial decay parameters were 0.041 and 0.039, for the spatio-temporal model with latitude and longitude and for latitude, longitude, and altitude, respectively. The posterior distributions were stable after the spatial decay parameter was fixed. root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and bias were calculated for model validation. Finally, the missing values were generated using the independent Gaussian process model.

Geomagnetic Field Distribution in the Korean Peninsula by Spherical Harmonic Analysis (구면조화해석(球面調和解析)에 의(依)한 한반도내(韓半島內)의 지구자기장(地球磁氣場)의 분포(分布)에 관(關)한 연구(硏究))

  • Min, Kyung Duck;Lee, Sunhee
    • Economic and Environmental Geology
    • /
    • v.12 no.2
    • /
    • pp.95-104
    • /
    • 1979
  • The position of any point on the earth's surface can be. represented in the spherical coordinates by surface spherical harmonics. Since geomagnetic field is a function of position on the earth, it can be also expressed by spherical harmonic analysis as spherical harmonics of trigonometric series of $a_m({\theta})$ cos $m{\phi}$ and $b_m({\theta})$ sin $m{\phi}$. Coefficients of surface spherical harmonics, $a_m({\theta})$ and $b_m({\theta})$, can be drawn from the components of the geomagnetic field, declination and inclination, and vice versa. In this paper, components of geomagnetic field, declination and inclination in the Korean peninsula are obtained by spherical harmonic analysis using the Gauss coefficients calculated from the world-wide magnetic charts of 1960. These components correspond to the values of normal geomagnetic field having no disturbances of subsurface mass, structure, and so on. The vertical and total components offer the zero level for the interpretation of geomagnetic data obtained by magnetic measurement in the Korean peninsula. Using this zero level, magnetic anomaly map is obtained from the data of airborne magnetic. prospecting carried out during 1958 to 1960. The conclusions of this study are as follows; (1) The intensity of horizontal component of normal geomagnetic field in Korean peninsula ranges from $2{\times}10^4$ gammas to $2.45{\times}10^4$ gammas. It decreases about 500 with the increment of $1^{\circ}$ in latitude. Along the same. latitude, it increases 250 gammas with the increment of $1^{\circ}$ in longitude. (2) Intensity of vertical component ranges from $3.85{\times}10^4$ gammas to $5.15{\times}10^4$ gammas. It increases. about 1000 gammas with the increment of $1^{\circ}$ in latitude. Along the same latitude, it decreases. 150~240 gammas with the increment of $1^{\circ}$ in longitude. Decreasing rate is considerably larger in higher latitude than in lower latitude. (3) Total intensity ranges from $4.55{\times}10^4$ gammas to $5.15{\times}10^4$ gammas. It increases 600~700 gammas with the increament of $1^{\circ}$ in latitude. Along the same latitude, it decreases 10~90 gammas. with the increment of $1^{\circ}$ in longitude. Decreasing rate is considerably larger in higher latitude as the case of vertical component. (4) The declination ranges from $-3.8^{\circ}$ to $-11.5^{\circ}$. It increases $0.6^{\circ}$ with the increment of $1^{\circ}$ in latitude. Along the same latutude, it increases $0.6^{\circ}$ with the increment of l O in longitude. Unlike the cases of vertical and total component, the rate of change is considerably larger in lower latitude than in higher latitude. (5) The inclination ranges from $57.8^{\circ}$ to $66.8^{\circ}$. It increases about $1^{\circ}$ with 'the increment of $1^{\circ}$ in latitude Along the same latitude, it dereases $0.4^{\circ}$ with the increment of $1^{\circ}$ in longitude. (6) The Boundaries of 5 anomaly zones classified on the basis of the trend and shape of anomaly curves correspond to the geologic boundaries. (7) The trend of anomaly curves in each anomaly zone is closely related to the geologic structure developed in the corresponding zone. That is, it relates to the fault in the 3rd zone, the intrusion. of granite in the 1st and 5th zones, and mountains in the 2nd and 4th zones.

  • PDF

Some Desmids from Garhwal Region of Uttarakhand, India

  • Misra, Pradeep Kumar;Misra, Purnima;Shukla, Madhulika;Prakash, Jai
    • ALGAE
    • /
    • v.23 no.3
    • /
    • pp.177-186
    • /
    • 2008
  • The present paper consists of 42 taxa belonging to 7 genera of desmids (green algae) collected from two districts of Garhwal region of Uttarakhand (Western Himalayas). The district Haridwar is located 29° 55’to 29° 59’N latitude and 68° 5’to 68° 30’E longitude covering about 2360 km2 area and Dehradun district is situated between 77° 34’to 78° 18’E longitude and 29° 58’to 30° 58’N latitude. Seven genera of desmids are (with number of taxa in parenthesis): Closterium Nitzsch. (9), Cosmarium Corda ex Ralfs (25), Euastrum Ehr. (2), Spondylosium Breb. (1), Micrasterias Ag. (1), Staurastrum Meyen (3), Arthrodesmus Ehr. (1). All these taxa constitute new records for the area. The algal localities are relatively cleaner than those of majority of urban areas. A rich assemblage of desmids shows that water bodies of these hilly areas are still undisturbed and need protection for preservation of algal biodiversity.