• Title/Summary/Keyword: Longissimus Dorsi Muscle

Search Result 223, Processing Time 0.024 seconds

A whole genome sequence association study of muscle fiber traits in a White Duroc×Erhualian F2 resource population

  • Guo, Tianfu;Gao, Jun;Yang, Bin;Yan, Guorong;Xiao, Shijun;Zhang, Zhiyan;Huang, Lusheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.5
    • /
    • pp.704-711
    • /
    • 2020
  • Objective: Muscle fiber types, numbers and area are crucial aspects associated with meat production and quality. However, there are few studies of pig muscle fibre traits in terms of the detection power, false discovery rate and confidence interval precision of whole-genome quantitative trait loci (QTL). We had previously performed genome scanning for muscle fibre traits using 183 microsatellites and detected 8 significant QTLs in a White Duroc×Erhualian F2 population. The confidence intervals of these QTLs ranged between 11 and 127 centimorgan (cM), which contained hundreds of genes and hampered the identification of QTLs. A whole-genome sequence imputation of the population was used for fine mapping in this study. Methods: A whole-genome sequences association study was performed in the F2 population. Genotyping was performed for 1,020 individuals (19 F0, 68 F1, and 933 F2). The whole-genome variants were imputed and 21,624,800 single nucleotide polymorphisms (SNPs) were identified and examined for associations to 11 longissimus dorsi muscle fiber traits. Results: A total of 3,201 significant SNPs comprising 7 novel QTLs showing associations with the relative area of fiber type I (I_RA), the fiber number per square centimeter (FN) and the total fiber number (TFN). Moreover, one QTL on pig chromosome 14 was found to affect both FN and TFN. Furthermore, four plausible candidate genes associated with FN (kinase non-catalytic C-lobe domain containing [KNDC1]), TFN (KNDC1), and I_RA (solute carrier family 36 member 4, contactin associated protein like 5, and glutamate metabotropic receptor 8) were identified. Conclusion: An efficient and powerful imputation-based association approach was utilized to identify genes potentially associated with muscle fiber traits. These identified genes and SNPs could be explored to improve meat production and quality via marker-assisted selection in pigs.

A comparison of supplemental calcium soap of palm fatty acids versus tallow in a corn-based finishing diet for feedlot steers

  • Warner, Crystal M.;Hahm, Sahng-Wook;Archibeque, Shawn L.;Wagner, John J.;Engle, Terry E.;Roman-Muniz, Ivette N.;Woerner, Dale;Sponsler, Mark;Han, Hyungchul
    • Journal of Animal Science and Technology
    • /
    • v.57 no.6
    • /
    • pp.25.1-25.7
    • /
    • 2015
  • Rumen bypass fat is commonly added to increase energy intake in dairy cattle. The objective of this study is to examine the addition of rumen bypass fat during finishing period on performance and carcass characteristics in grain fed steers. This study was conducted as a completely randomized block design with 126 cross-bred steer calves (initial BW $471.5{\pm}7.5kg$) randomly assigned to pens with 9 steers/pen (n = 7 pens/treatment). Each pen was randomly assigned to one of two treatment groups; rumen bypass fat treatment (CCS, calcium soap of palm fatty acids) and control diet (CT, tallow). The diets were formulated to be isonitrogenous and isocaloric. Animals were fed twice daily at 110 % of the previous daily ad libitum intake. Blood from each sample was taken from the jugular vein. Muscle and adipose samples were collected from the longissimus dorsi regions. Feedlot performance and carcass characteristics were assessed. To examine adipogenic gene expression, quantitative real-time PCR was completed. Steers fed the CT had a greater level of performance for most of the parameters measured. The CT group had greater DMI (P < 0.05) and tended to have greater ADG (P < 0.10). Marbling score (P < 0.05) and quality grade (P < 0.05) were greater for steers fed the CT diet than those fed CCS. The longissimus muscle area tended to be greater (P < 0.10) in steers fed CT ($87.60cm^2$) than those fed CCS (84.88 cm2). The leptin mRNA expression was down-regulated (P < 0.05) in adipose tissue of steers fed a CCS when compared to those fed CT. These data suggest that calcium soap of palm fatty acids can be added to finishing diets without significant reduction in final body weight, although there may be modest reductions in marbling and quality scores.

Changes in expression of monocarboxylate transporters, heat shock proteins and meat quality of Large White Yorkshire and Ghungroo pigs during hot summer period

  • Parkunan, Thulasiraman;Das, Arun K.;Banerjee, Dipak;Mohanty, Niharika;Paul, Avishek;Nanda, P.K.;Biswas, TK;Naskar, Syamal;Bag, Sadhan;Sarkar, Mihir;Mohan, Narayana H.;Das, Bikash Chandra
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.2
    • /
    • pp.246-253
    • /
    • 2017
  • Objective: Present study explores the effect of hot summer period on the glycolytic rate of early post-mortem meat quality of Ghungroo and Large White Yorkshire (LWY) pig and comparative adaptability to high temperature between above breeds by shifting the expression of stress related genes like mono-carboxylate transporters (MCTs) and heat shock proteins (HSPs). Methods: Healthy pigs of two different breeds, viz., LYW and Ghungroo (20 from each) were maintained during hot summer period (May to June) with a mean temperature of about $38^{\circ}C$. The pigs were slaughtered and meat samples from the longissimus dorsi (LD) muscles were analyzed for pH, glycogen and lactate content and mRNA expression. Following 24 h of chilling, LD muscle was also taken from the carcasses to evaluate protein solubility and different meat quality measurements. Results: LWY exhibited significantly (p<0.01) higher plasma cortisol and lactate dehydrogenase concentration than Ghungroo indicating their higher sensitivity to high temperature. LD muscle from LWY pigs revealed lower initial and ultimate pH values and higher drip loss compared to Ghungroo, indicating a faster rate of pH fall. LD muscle of Ghungroo had significantly lower lactate content at 45 min postmortem indicating normal postmortem glycolysis and much slower glycolytic rate at early postmortem. LD muscle of LWY showed rapid postmortem glycolysis, higher drip loss and higher degrees of protein denaturation. Ghungroo exhibited slightly better water holding capacity, lower cooking loss and higher protein solubility. All HSPs (HSP27, HSP70, and HSP90) and MCTs (MCT1, MCT2, and MCT4) in the LD muscle of pigs inclined to increase more in Ghungroo than LWY when exposed to high temperature. Conclusion: Effect of high temperature on the variation of HSPs and MCTs may play a crucial role in thermal tolerance and adaptation to different climatic conditions, pH regulation, muscle acidification, drip loss, protein denaturation and also in postmortem meat quality development.

Relationships of Muscle Fiber Characteristics to Dietary Energy Density, Slaughter Weight, and Muscle Quality Traits in Finishing Pigs

  • Jeong, Jin-Yeon;Kim, Gap-Don;Ha, Duck-Min;Park, Man-Jong;Park, Byung-Chul;Joo, Seon-Tea;Lee, C.-Young
    • Journal of Animal Science and Technology
    • /
    • v.54 no.3
    • /
    • pp.175-183
    • /
    • 2012
  • The present study was conducted to investigate the relationships of muscle fiber characteristics to dietary energy density [3.0(Low-E) vs. 3.2 (Med-E) Mcal DE/kg)] and slaughter weight [SW; 110, 125, and 138 kg] in finishing pigs (gilt vs. barrow) using a $2{\times}3{\times}2$ factorial treatment design. Forty-one longissimus dorsi muscle (LM) samples were analyzed histochemically, with growth performance and physicochemical data for the 41 animals and their LM out of 192 animals and 72 LM used in a previous study retrospectively included. The ADG was less (P<0.01) in the Low-E than in the Med-E group (0.93 vs. 0.73 kg) whereas lightness ($L^*$) and redness ($a^*$) of LM were greater in the Low-E group SW did not influence these variables. The diameter and perimeter of the type I (slow-oxidative), type IIA (fast oxido-glycolytic) and type IIB (fast glycolytic) fibers increased with increasing SW whereas densities of the fibers decreased. However, the number and area percentages of the fiber types were not influenced by SW or dietary energy density. The percentage and per-$mm^2$ density of type IIB fibers were negatively correlated with SW (r = -0.33 and -0.57, with P<0.05 and <0.01, respectively), whereas type I fiber number percentage was positively correlated with SW (r = 0.31; P<0.05). Marbling score was negatively correlated (P<0.05) with type I (r = -0.36) and type IIB (r = -0.39) fiber densities. The $a^*$ was correlated (P<0.01) with both type I and type IIB fiber number percentages in the opposite way (r = 0.42 and -0.47, respectively). However, $L^*$ (lightness), drip loss and $pH_{24h}$ were not correlated with the fiber number percentage or density of any fiber type. Collectively, results indicate that muscle fibers grow by hypertrophy during the late finishing period, but that fiber characteristics other than the size are not significantly influenced by dietary energy density or SW.

Effects of coated cysteamine hydrochloride on muscle fiber characteristics and amino acid composition of finishing pigs

  • Bai, Miaomiao;Liu, Hongnan;Xu, Kang;Yu, Rong;Oso, Abimbola Oladele;Deng, Jinping;Yin, Yulong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.9
    • /
    • pp.1430-1438
    • /
    • 2019
  • Objective: This experiment was designed to determine the effects of coated cysteamine hydrochloride (CC) on muscle fiber characteristics, amino acid composition and transporters gene expression in the longissimus dorsi muscle (LDM) of finishing pigs. Methods: Two hundred and sixteen Duroc/Landrace/Yorkshire cross-bred male finishing pigs were fed with a corn-soybean basal diet supplemented with 0, 70, and 140 mg/kg cysteamine. Each group contained eight replicates of nine pigs per replicate. After 29 days, one pig was randomly selected from each replicate and slaughtered. Blood and LDM samples were collected and analyzed. Results: The results showed that supplemental dietary CC increased (p<0.05) the muscle fiber density. And CC supplementation also up-regulated (p<0.05) the expression of myosin heavy chain 1 (MyHC1) and MyHC2x mRNA levels, and down-regulated (p<0.05) MyHC2b expression in the LDM. Additionally, supplemental dietary CC reduced (p<0.05) the concentration of total cholesterol in the plasma and enhanced (p<0.05) the concentrations of essential amino acid and total amino acid in the LDM. The relative expression levels of chloramphenicol acetyltransferase 2, $b^{0,+}$ amino acid transporter, and $y^+$-L-type amino acid transporter 1 were upregulated (p<0.05) in the LDM when pigs were fed with the dietary CC of 70 mg/kg. Conclusion: Cysteamine supplementation could increase fiber density and distribution of fiber types. It also improved the deposition of protein in the LDM by up-regulated the expression of amino acid transporters.

Effects of Level of CP and TDN in the Concentrate Supplement on Growth Performances and Carcass Characteristics in Hanwoo Steers during Final Fattening Period (한우거세우 비육후기 배합사료의 적정 조단백질 및 에너지함량 규명에 관한 연구)

  • Jeong, Joon;Seong, Nak-Il;Hwang, Il-Ki;Lee, Sun-Bok;Yu, Myung-Sang;Nam, In-Sik;Lee, Myong-Il
    • Journal of Animal Science and Technology
    • /
    • v.52 no.4
    • /
    • pp.305-312
    • /
    • 2010
  • Seventy two Hanwoo steers in final fattening period ($585.87{\pm}41.02kg$) were randomly assigned to 3 groups, LPLT (relatively low protein and low energy; CP 12%, TDN 73%), LPHT (relatively low protein and high energy; CP 12%, TDN 75%) and HPHT (relatively high protein and high energy; CP 14%, TDN 75%) in concentrate feed for 163 days in order to investigate the effects on growth performance, carcass characteristics, and longissimus dorsi muscle's chemical compositions. Rice straw was also fed as a roughage. Because ADGs were higher in LPLT and HPHT than LPHT, feed efficiencies were improved in LPLT and HPHT group (P<0.05). Feeding concentrates with different CP and TDN levels had affected to improve back fat thickness and rib eye area in HPHT group but had no effect on carcass weight and meat yield index. Carcass weight for LPLT, LPHT and HPHT were $420.75{\pm}30.56$, $417.05{\pm}32.03$ and $418.32{\pm}32.03kg$, respectively. Meat quality grade was improved in HPHT (P<0.001), because the marbling score was highest in HPHT group. Auction prices (carcass/kg) of LPLT, LPHT and HPHT group were 17,904 won, 18,094 won and 18,899 won, respectively. The percentage of animals over grade 1 appeared in LPLT, LPHT and HPHT were 79.2, 72.7 and 90.8%, respectively. The results of chemical analysis of longissimus dorsi muscle showed no difference between groups but crude fat composition tended to be higher in HPHT group (P=0.088) than the other groups. Stearic acid contents in the muscle was significantly increased in HPHT group than LPLT group (P<0.05). Myristoleic acid and oleic acid composition in HPHT group was higher than LPLT and LPHT group. These results supported the hypothesis that supplementation of higher levels of crude protein and energy in concentrates to Hanwoo steers' during final fattening period improved the growth performance and the carcass quality grade.

Physico-chemical Meat Qualities of Loin and Top Round Beef from Holstein Calves with Different Slaughtering Ages

  • Cho, Soohyun;Kang, Sun Moon;Seong, Pilnam;Kang, Geunho;Choi, Sunho;Kwon, Engki;Moon, Sungsil;Kim, Donghun;Park, Beomyoung
    • Food Science of Animal Resources
    • /
    • v.34 no.5
    • /
    • pp.674-682
    • /
    • 2014
  • The objective of this study was to investigate the physico-chemical and sensory properties of loin (m. longissimus dorsi) and top round (m. semimembranosus) beef from 3-, 6-, 9-, and 12 mon-old Holstein calves. For both loin and top round muscles, the moisture contents were decreased, whereas the protein and fat contents were increased, as the slaughtering age increased. In terms of meat color, for both muscle types, CIE $L^*$ values were decreased, whereas CIE $a^*$ values and myoglobin content increased as the slaughtering age increased. pH values were significantly higher in the 3 mon-old group than in the other groups. The Warner-Bratzler shear force (WBSF) values were lowest for loin muscles from the 12 mon-old group; however, there was no significant difference for top round muscle among the 4 age groups. Cooking loss for both loin and top round muscles were significantly higher for the 3 mon-old group than for the other groups. The water holding capacity (WHC) of both muscles were highest for the 12 mon-old groups (p<0.05). In fatty acid composition of the 12 mon-old groups, loin muscles had significantly higher levels of C14:0, C16:1n7, C18:1n9, and mono-unsaturated fatty acids (MUFA), and top round muscles had significantly higher levels of C16:1n7, C18:1n7, C18:1n9, MUFA, MUFA/SFA. Loin muscle from the 3- and 12 mon-old groups had significantly higher scores for tenderness and overall likeness. Top round muscle from the 9- and 12 mon-old groups had significantly higher scores for overall likeness than those from the other age groups.

Molecular Cloning and mRNA Expression of the Porcine Insulin-responsive Glucose Transporter (GLUT4)

  • Zuo, Jianjun;Dai, Fawen;Feng, Dingyuan;Cao, Qingyun;Ye, Hui;Dong, Zemin;Xia, Weiguang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.5
    • /
    • pp.640-648
    • /
    • 2010
  • Insulin-responsive glucose transporter 4 (GLUT4) is a member of the glucose transporter family and mainly presents in skeletal muscle and adipose tissue. To clarify the molecular structure of porcine GLUT4, RACE was used to clone its cDNA. Several cDNA clones corresponding to different regions of GLUT4 were obtained by amplifying reverse-transcriptase products of total RNA extracted from Landrace porcine skeletal muscles. Nucleotide sequence analysis of the cDNA clones revealed that porcine GLUT4 cDNA was composed of 2,491 base pairs with a coding region of 509 amino acids. The deduced amino acid sequence was over 90% identical to human, rabbit and cattle GLUT4. The tissue distribution of GLUT4 was also examined by Real-time RT-PCR. The mRNA expression abundance of GLUT4 was heart>liver, skeletal muscle and brain>lung, kidney and intestine. The developmental expression of GLUT4 and insulin receptor (IR) was also examined by Real-time RT-PCR using total RNA extracted from longissimus dorsi (LM), semimembranosus (SM), and semitendinosus (SD) muscle of Landrace at the age of 1, 7, 30, 60 and 90 d. It was shown that there was significant difference in the mRNA expression level of GLUT4 in skeletal muscles of Landrace at different ages (p<0.05). The mRNA expression level of IR also showed significant difference at different ages (p<0.05). The developmental change in the mRNA expression abundance of GLUT4 was similar to that in IR, and both showed a higher level at birth and 30 d than at other ages. However, there was no significant tissue difference in the mRNA expression of GLUT4 or IR (p>0.05). These results showed that the nucleotide sequence of the cDNA clones was highly identical with human, rabbit and cattle GLUT4 and the developmental change of GLUT4 mRNA in skeletal muscles was similar to that of IR, suggesting that porcine GLUT4 might be an insulin-responsive glucose transporter. Moreover, the tissue distribution of GLUT4 mRNA showed that GLUT4 might be an important nutritional transporter in porcine skeletal muscles.

Molecular and functional characterization of the adiponectin (AdipoQ) gene in goat skeletal muscle satellite cells

  • Wang, Linjie;Xue, Ke;Wang, Yan;Niu, Lili;Li, Li;Zhong, Tao;Guo, Jiazhong;Feng, Jing;Song, Tianzeng;Zhang, Hongping
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1088-1097
    • /
    • 2018
  • Objective: It is commonly accepted that adiponectin binds to its two receptors to regulate fatty acid metabolism in adipocytes. To better understand their functions in the regulation of intramuscular adipogenesis in goats, we cloned the three genes (adiponectin [AdipoQ], adiponectin receptor 1 [AdipoR1], and AdipoR2) encoding these proteins and detected their mRNA distribution in different tissues. We also determined the role of AdipoQ in the adipogenic differentiation of goat skeletal muscle satellite cells (SMSCs). Methods: SMSCs were isolated using 1 mg/mL Pronase E from the longissimus dorsi muscles of 3-day-old female Nanjiang brown goats. Adipogenic differentiation was induced in satellite cells by transferring the cells to Dulbecco's modified Eagle's medium supplemented with an isobutylmethylxanthine, dexamethasone and insulin cocktail. The pEGFP-N1-AD plasmid was transfected into SMSCs using Lipofectamine 2000. Expression of adiponectin in tissues and SMSCs was detected by quantitative polymerase chain reaction and immunocytochemical staining. Results: The three genes were predominantly expressed in adipose and skeletal muscle tissues. According to fluorescence and immunocytochemical analyses, adiponectin protein expression was only observed in the cytoplasm, suggesting that adiponectin is localized to the cytoplasm of goat SMSCs. In SMSCs overexpressing the AdipoQ gene, adiponectin promoted SMSC differentiation into adipocytes and significantly (p<0.05) up-regulated expression of AdipoR2, acetyl-CoA carboxylase, fatty-acid synthase, and sterol regulatory element-binding protein-1, though expression of CCAAT/enhancer-binding $protein-{\alpha}$, peroxisome proliferator-activated receptor ${\gamma}$, and AdipoR1 did not change significantly. Conclusion: Adiponectin induced SMSC differentiation into adipocytes, indicating that adiponectin may promote intramuscular adipogenesis in goat SMSC.

Dietary supplementation with L-glutamine enhances immunity and reduces heat stress in Hanwoo steers under heat stress conditions

  • Yves, Kamali;Yong Ho, Jo;Won Seob, Kim;Jalil Ghassemi, Nejad;Jae-Sung, Lee;Hong Gu, Lee
    • Journal of Animal Science and Technology
    • /
    • v.64 no.6
    • /
    • pp.1046-1062
    • /
    • 2022
  • This study investigated the effects of L-glutamine (Gln) supplementation on growth performance, physiological traits, heat shock proteins (HSPs), and gene expression related to muscle and adipose tissue development in Hanwoo steers under heat stress (HS) conditions. Eight Hanwoo steers (initial body weight [BW] 570.7 ± 43.6 kg, months of age 22.3 ± 0.88) were randomly separated into two groups, control and treatment, and supplied with the concentration (1.5% of BW kg/day/head) and rice straw (1.5 kg/day/head). The treatment group were fed the Gln supplementation (0.5% of concentration, as-fed basis) once a day at 08:00 h. Blood samples for the assessment of haematological and biochemical parameters and the separation of peripheral blood mononuclear cells (PBMCs) were collected four times, at 0, 3, 6, and 10 weeks of the experiment. Feed intake was measured daily. BW to analyze growth performance and hair follicle collection to analyze the expression of HSPs were executed four times at 0, 3, 6, and 10 weeks. To analyze gene expression, longissimus dorsi muscle samples were collected by biopsy at the end of the study. As a result, growing performance, including final BW, average daily gain, and gain-to-feed ratio, were not different between the two groups. Leukocytes including lymphocytes and granulocytes, tended to increase in the Gln supplementation group (p = 0.058). There were also no differences in biochemical parameters shown between the two groups, except total protein and albumin, both of which were lower in the Gln supplementation group (p < 0.05). Gene expressions related to muscle and adipose tissue development were not different between the two groups. As temperature-humidity index (THI) increased, HSP70 and HSP90 expression in the hair follicle showed a high correlation. HSP90 in the hair follicle was decreased in the treatment group compared with the control group at 10 weeks (p < 0.05). Collectively, dietary Gln supplementation (0.5% of concentration, as-fed basis) may not be influential enough to affect growth performance and gene expression related to muscle and adipose tissue development in steers. However, Gln supplementation increased the number of immune cells and decreased HSP90 in the hair follicle implying HS reduction in the corresponding group.