• Title/Summary/Keyword: Long-term thermal stress

Search Result 60, Processing Time 0.024 seconds

Influence of Endurance tests on Space Charge Distribution of 160kV HVDC XLPE Cable

  • Liu, Yun-Peng;Liu, He-Chen
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.302-309
    • /
    • 2017
  • The ageing of XLPE cable insulation will lead to the accelerating accumulation of space charge, which will greatly affect the safe operation of the HVDC cable. In order to investigate the influence of different ageing modes on the space charge distribution of the HVDC cable, thermal stressed, electrical stressed and electro-thermal stressed endurance tests were carried out on the XLPE peelings. The tested XLPE peelings were obtained from 160kV HVDC cable insulation. The endurance tests were carried at thermal stress of 363K, electrical stress of 20kV/mm DC and a combination of both. The Pulsed Electro-Acoustic (PEA) method was used to measure the space charge distribution of the samples. The influences of ageing on the trap energy distribution were analyzed based on the isothermal relaxation theory and the decay characteristics of the space charge. The results showed that thermal ageing would help to improve the crystalline morphologies of the XLPE at the early stage. The total amount of space charge decreased compared to the ones before thermal ageing. The long term of electrical stress would result in the cleavage of polymer molecule chains which would intensify the accumulation of space charge and increase the density and depth of electron traps. With a combination of electrical and thermal stress, the injection and migration of space charge were more significant. Besides, the depth and density of electron traps increased rapidly with the increase of endurance time.

Design Validation and Improvement of District Heating Pipe Using FE Simulation (유한요소 시뮬레이션을 통한 지역난방열배관 특성 평가 및 강화이형관의 제안)

  • Kim, Joo-Yong;Kim, Ho-Bum;Ko, Hyun-Il;An, Yong-Mo;Cho, Chong-Du
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.337-345
    • /
    • 2009
  • This paper investigates the reliability of district heating pipes at thermo-elastic fatigue loading. District heating pipes, subjected to $120^{\circ}C$ and $16kg_f/cm^2$ due to water distributing service through inside the pipes, should endure long term cyclic thermal-mechanical loadings. The heating pipes are the co-centric tubes of steel pipe, poly urethane(PUR) insulator, and high density poly ethylene(HDPE) case. On installation, foam pad is externally wrapped for accommodating stress reduction near the bend sections of pipes. However, there have been frequent reports on the failures of bend sections in the middle of long term service. This study scrutinizes the observed failures near the bend sections through applying the finite element methods. Specially in this study, heating pipes are studied on the influence of foam padding on failures and proposed new designs for reinforced bend without foam pad.

Stress Response of Cement Interface on Manufacturing Process of a Suspension Insulator (송전선용 현수애자 양생공정에서 발생하는 접착부의 응력변화)

  • Woo, Byung-Chul;Han, See-Won;Cho, Han-Goo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1448-1450
    • /
    • 2003
  • The suspension insulators are subjected to harsh environment in service for a long time. Long term reliability of the insulators is required for both mechanical and electrical performances. We studied an analysing method to find out a deformation of brittle porcelain with a thermal expansion of simulation analysis and experimental results show that cement volume growths affect severely to be mechanical failure ageing.

  • PDF

Study on the Causes of Premature Cracking of Epoxy Coatings for Ship's Ballast Tanks

  • Song, Eun Ha;Lee, Ho Il;Chung, Mong Kyu;Lee, Seong Kyun;Baek, Kwang Ki
    • Corrosion Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.69-76
    • /
    • 2006
  • Premature cracking of the epoxy coatings applied on ship's ballast tanks(BT) can lead to damage of ship's hulls. To avoid this, it's important to have clear understanding of the underlying mechanism and primary factors of the coating crack. In this study, the efforts were made to clarify the integrated effects of main factors, i.e., initial coating shrinkage, thermally induced strain, steel-structural strain and the intrinsic coating flexibility at the initial and after aging, to the early cracking phenomena of epoxy coating in the ship's ballast tank. The coating crack is caused by combination of thermal stress, structural stress, and internal stresses which is closely related to chemical structures of the coatings. On the other hand, thermal stresses and dimensional stabilities would rarely play a major role in coating crack for ballast tank coatings with rather large flexibility. Crack resistance of the coatings at early stages can be estimated roughly by measuring internal stress, FT-IR and $T_g$ value of the coatings. A new screening test method was also proposed in this study, which can be possibly related to the long-term resistance of epoxy-based paints to cracking.

ASSESSMENT OF THERMAL FATIGUE IN MIXING TEE BY FSI ANALYSIS

  • Jhung, Myung Jo
    • Nuclear Engineering and Technology
    • /
    • v.45 no.1
    • /
    • pp.99-106
    • /
    • 2013
  • Thermal fatigue is a significant long-term degradation mechanism in nuclear power plants. In particular, as operating plants become older and life time extension activities are initiated, operators and regulators need screening criteria to exclude risks of thermal fatigue and methods to determine significant fatigue relevance. In general, the common thermal fatigue issues are well understood and controlled by plant instrumentation at fatigue susceptible locations. However, incidents indicate that certain piping system Tee connections are susceptible to turbulent temperature mixing effects that cannot be adequately monitored by common thermocouple instrumentations. Therefore, in this study thermal fatigue evaluation of piping system Tee-connections is performed using the fluid-structure interaction (FSI) analysis. From the thermal hydraulic analysis, the temperature distributions are determined and their results are applied to the structural model of the piping system to determine the thermal stress. Using the rain-flow method the fatigue analysis is performed to generate fatigue usage factors. The procedure for improved load thermal fatigue assessment using FSI analysis shown in this study will supply valuable information for establishing a methodology on thermal fatigue.

A Study on the Long-Term Integrity of Polymer Concrete for High Integrity Containers

  • Young Hwan Hwang;Mi-Hyun Lee;Seok-Ju Hwang;Jung-Kwon Son;Cheon-Woo Kim;Suknam Lim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.3
    • /
    • pp.411-417
    • /
    • 2023
  • During the operation of a nuclear power plant (NPP), the generation of radioactive waste, including dry active waste (DAW), concentrates, spent resin, and filters, mandates the implementation of appropriate disposal methods to adhere to Korea's waste acceptance criteria (WAC). In this context, this study investigates the potential use of polymer concrete (PC) as a high-integrity container (HIC) material for solidifying and packaging these waste materials. PC is a versatile composite material comprising binding polymers, aggregates, and additives, known for its exceptional strength and chemical stability. A comprehensive analysis of PC's long-term integrity was conducted in this study. First, its compressive strength, which is crucial for ensuring the structural stability of HICs over extended periods, was evaluated. Subsequently, the resilience of PC was tested under various stress conditions, including biological, radiological, thermal, and chemical stressors. The findings of this study indicate that PC exhibits remarkable long-term properties, demonstrating exceptional stability even when subjected to diverse stressors. The results therefore underscore the potential viability of PC as a reliable material for constructing high-integrity containers, thus contributing to the safe and sustainable management of radioactive waste in NPPs.

An evaluation system for determining the stress redistribution of a steel cable-stayed bridge due to cable stress relaxation at various temperatures

  • Tien-Thang Hong;Duc-Kien Thai;Seung-Eock Kim
    • Steel and Composite Structures
    • /
    • v.46 no.6
    • /
    • pp.805-821
    • /
    • 2023
  • This study developed an evaluation system to explore the effect of the environmental temperature on the stress redistribution produced by cable stress relaxation of structural members in a steel cable-stayed bridge. The generalized Maxwell model is used to estimate stress relaxation at different temperatures. The environmental temperature is represented using the thermal coefficients and temperature loads. The fmincon optimization function is used to determine the set of stress relaxation parameters at different temperatures for all cables. The ABAQUS software is employed to investigate the stress redistribution of the steel cable-stayed bridge caused by the cable stress relaxation and the environmental temperature. All of these steps are set up as an evaluation system to save time and ensure the accuracy of the study results. The developed evaluation system is then employed to investigate the effect of environmental temperature and cable type on stress redistribution. These studies' findings show that as environmental temperatures increased up to 40 ℃, the redistribution rate increased by up to 34.9% in some girders. The results also show that the cable type with low relaxation rates should be used in high environmental temperature areas to minimize the effect of cable stress relaxation.

Evaluation of Thermal and Shrinkage Stresses in Hardening Concrete Considering Early-Age Creep Effect (초기재령 콘크리트의 크리프를 고려한 온도 및 수축응력 해석)

  • 차수원;오병환;이형준
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.382-391
    • /
    • 2002
  • This study is devoted to the problems of thermal and shrinkage stresses in order to avoid cracking at early ages. The early-age damage induced by volume change has great influence on the long-term structural performance of the concrete structures such as its durability and serviceability To solve this complex problem, the computer programs for analysis of thermal and shrinkage stresses were developed. In these procedures, numerous material models are needed and the realistic numerical models have been developed and validated by comparison with relevant experimental results in order to solve practical problems. A framework has been established for formulation of material models and analysis with 3-D finite element method. After the analysis of the temperature, moisture and degree of hydration field in hardening concrete structure, the stress development is determined by incremental structural formulation derived from the principle of virtual work. In this study, the stress development is related to thermal and shrinkage deformation, and resulting stress relaxation due to the effect of early-age creep. From the experimental and numerical results it is found that the early-age creep p)ays important role in evaluating the accurate stress state. The developed analysis program can be efficiently utilized as a useful tool to evaluate the thermal and shrinkage stresses and to find measures for avoiding detrimental cracking of concrete structures at early ages.

Modeling of combined thermal and mechanical action in roller compacted concrete dam by three-dimensional finite element method

  • Abdulrazeg, A.A.;Noorzaei, J.;Mohammed, T.A.;Jaafar, M.S.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.1
    • /
    • pp.1-25
    • /
    • 2013
  • A combined thermal and mechanical action in roller compacted concrete (RCC) dam analysis is carried out using a three-dimensional finite element method. In this work a numerical procedure for the simulation of construction process and service life of RCC dams is presented. It takes into account the more relevant features of the behavior of concrete such as hydration, ageing and creep. A viscoelastic model, including ageing effects and thermal dependent properties is adopted for the concrete. The different isothermal temperature influence on creep and elastic modulus is taken into account by the maturity concept, and the influence of the change of temperature on creep is considered by introducing a transient thermal creep term. Crack index is used to assess the risk of occurrence of crack either at short or long term. This study demonstrates that, the increase of the elastic modulus has been accelerated due to the high temperature of hydration at the initial stage, and consequently stresses are increased.

Investigations on PD Characteristics of Thermal aged Palm and Corn Oil for Power Transformer Insulation Applications

  • Senthilkumar, S.;Karthik, B.;Chandrasekar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1660-1669
    • /
    • 2014
  • Partial discharge (PD) detection plays a major role in the life time assessment of liquid insulation in power transformers. Many research works are being carried out to replace conventional mineral oil insulation in transformers by vegetable oils. It is necessary to understand the PD characteristics of vegetable oils before recommending them as an alternate for mineral oil. In this paper, the breakdown strength and PD characteristics of palm and corn oil were investigated in both unaged and thermally aged conditions. Laboratory experiments were performed as per IEC test procedures. PD signals were measured using wide band detection system. Phase resolved PD pattern of vegetable oils and mineral oil were compared. Effect of increase in voltage stress on the PD pattern of palm and corn oil were studied. Time and frequency domain analysis of PD pulses at needle-plane electrode configuration was carried out. Statistical analysis of PD pattern i.e. skewness and shape parameter variations with respect to applied thermal stress were also carried out. From the results, it is observed that palm and corn oils have better breakdown strength and PD characteristics even under long-term thermal stress and hence they can be used for power transformer applications.