• 제목/요약/키워드: Long-term station blackout

검색결과 8건 처리시간 0.023초

Simulation and transient analyses of a complete passive heat removal system in a downward cooling pool-type material testing reactor against a complete station blackout and long-term natural convection mode using the RELAP5/3.2 code

  • Hedayat, Afshin
    • Nuclear Engineering and Technology
    • /
    • 제49권5호
    • /
    • pp.953-967
    • /
    • 2017
  • In this paper, a complete station blackout (SBO) or complete loss of electrical power supplies is simulated and analyzed in a downward cooling 5-MW pool-type Material Testing Reactor (MTR). The scenario is traced in the absence of active cooling systems and operators. The code nodalization is successfully benchmarked against experimental data of the reactor's operating parameters. The passive heat removal system includes downward water cooling after pump breakdown by the force of gravity (where the coolant streams down to the unfilled portion of the holdup tank), safety flapper opening, flow reversal from a downward to an upward cooling direction, and then the upward free convection heat removal throughout the flapper safety valve, lower plenum, and fuel assemblies. Both short-term and long-term natural core cooling conditions are simulated and investigated using the RELAP5 code. Short-term analyses focus on the safety flapper valve operation and flow reversal mode. Long-term analyses include simulation of both complete SBO and long-term operation of the free convection mode. Results are promising for pool-type MTRs because this allows operators to investigate RELAP code abilities for MTR thermal-hydraulic simulations without any oscillation; moreover, the Tehran Research Reactor is conservatively safe against the complete SBO and long-term free convection operation.

EVALUATION OF AN ACCIDENT MANAGEMENT STRATEGY OF EMERGENCY WATER INJECTION USING FIRE ENGINES IN A TYPICAL PRESSURIZED WATER REACTOR

  • PARK, SOO-YONG;AHN, KWANG-IL
    • Nuclear Engineering and Technology
    • /
    • 제47권6호
    • /
    • pp.719-728
    • /
    • 2015
  • Following the Fukushima accident, a special safety inspection was conducted in Korea. The inspection results show that Korean nuclear power plants have no imminent risk for expected maximum potential earthquake or coastal flooding. However long- and short-term safety improvements do need to be implemented. One of the measures to increase the mitigation capability during a prolonged station blackout (SBO) accident is installing injection flow paths to provide emergency cooling water of external sources using fire engines to the steam generators or reactor cooling systems. This paper illustrates an evaluation of the effectiveness of external cooling water injection strategies using fire trucks during a potential extended SBO accident in a 1,000 MWe pressurized water reactor. With regard to the effectiveness of external cooling water injection strategies using fire engines, the strategies are judged to be very feasible for a long-term SBO, but are not likely to be effective for a short-term SBO.

Prediction of radioactivity releases for a Long-Term Station Blackout event in the VVER-1200 nuclear reactor of Bangladesh

  • Shafiqul Islam Faisal ;Md Shafiqul Islam;Md Abdul Malek Soner
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.696-706
    • /
    • 2023
  • Consequences of an anticipated Beyond Design Basis Accident (BDBA) Long-Term Station Blackout (LTSBO) event with complete loss of grid power in the VVER-1200 reactor of Rooppur Nuclear Power Plant (NPP) of Unit-1 are assessed using the RASCAL 4.3 code. This study estimated the released radionuclides, received public radiological dose, and ground surface concentration considering 3 accident scenarios of International Nuclear and Radiological Event Scale (INES) level 7 and two meteorological conditions. Atmospheric transport, dispersion, and deposition processes of released radionuclides are simulated using a straight-line trajectory Gaussian plume model for short distances and a Gaussian puff model for long distances. Total Effective Dose Equivalent (TEDE) to the public within 40 km and radionuclides contribution for three-dose pathways of inhalation, cloudshine, and groundshine owing to airborne releases are evaluated considering with and without passive safety Emergency Core Cooling System (ECCS) in dry (winter) and wet (monsoon) seasons. Source term and their release rates are varied with the functional duration of passive safety ECCS. In three accident scenarios, the TEDE of 10 mSv and above are confined to 8 km and 2 km for the wet and dry seasons, respectively in the downwind direction. The groundshine dose is the most dominating in the wet season while the inhalation dose is in the dry season. Total received doses and surface concentration in the wet season near the plant are higher than those in the dry season due to the deposition effect of rain on the radioactive substances.

Thermal-hydraulic study of air-cooled passive decay heat removal system for APR+ under extended station blackout

  • Kim, Do Yun;NO, Hee Cheon;Yoon, Ho Joon;Lim, Sang Gyu
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.60-72
    • /
    • 2019
  • The air-cooled passive decay heat removal system (APDHR) was proposed to provide the ultimate heat sink for non-LOCA accidents. The APDHR is a modified one of Passive Auxiliary Feed-water system (PAFS) installed in APR+. The PAFS has a heat exchanger in the Passive Condensate Cooling Tank (PCCT) and can remove decay heat for 8 h. After that, the heat transfer rate through the PAFS drastically decreases because the heat transfer condition changes from water to air. The APDHR with a vertical heat exchanger in PCCT will be able to remove the decay heat by air if it has sufficient natural convection in PCCT. We conducted the thermal-hydraulic simulation by the MARS code to investigate the behavior of the APR + selected as a reference plant for the simulation. The simulation contains two phases based on water depletion: the early phase and the late phase. In the early phase, the volume of water in PCCT was determined to avoid the water depletion in three days after shutdown. In the late phase, when the number of the HXs is greater than 4089 per PCCT, the MARS simulation confirmed the long-term cooling by air is possible under extended Station Blackout (SBO).

Design and transient analysis of a compact and long-term-operable passive residual heat removal system

  • Wooseong Park;Yong Hwan Yoo;Kyung Jun Kang;Yong Hoon Jeong
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4335-4349
    • /
    • 2023
  • Nuclear marine propulsion has been emerging as a next generation carbon-free power source, for which proper passive residual heat removal systems (PRHRSs) are needed for long-term safety. In particular, the characteristics of unlimited operation time and compact design are crucial in maritime applications due to the difficulties of safety aids and limited space. Accordingly, a compact and long-term-operable PRHRS has been proposed with the key design concept of using both air cooling and seawater cooling in tandem. To confirm its feasibility, this study conducted system design and a transient analysis in an accident scenario. Design results indicate that seawater cooling can considerably reduce the overall system size, and thus the compact and long-term-operable PRHRS can be realized. Regarding the transient analysis, the Multi-dimensional Analysis of Reactor Safety (MARS-KS) code was used to analyze the system behavior under a station blackout condition. Results show that the proposed design can satisfy the design requirements with a sufficient margin: the coolant temperature reached the safe shutdown condition within 36 h, and the maximum cooling rate did not exceed 40 ℃/h. Lastly, it was assessed that both air cooling and seawater cooling are necessary for achieving long-term operation and compact design.

Modeling and analysis of selected organization for economic cooperation and development PKL-3 station blackout experiments using TRACE

  • Mukin, Roman;Clifford, Ivor;Zerkak, Omar;Ferroukhi, Hakim
    • Nuclear Engineering and Technology
    • /
    • 제50권3호
    • /
    • pp.356-367
    • /
    • 2018
  • A series of tests dedicated to station blackout (SBO) accident scenarios have been recently performed at the $Prim{\ddot{a}}rkreislauf-Versuchsanlage$ (primary coolant loop test facility; PKL) facility in the framework of the OECD/NEA PKL-3 project. These investigations address current safety issues related to beyond design basis accident transients with significant core heat up. This work presents a detailed analysis using the best estimate thermal-hydraulic code TRACE (v5.0 Patch4) of different SBO scenarios conducted at the PKL facility; failures of high- and low-pressure safety injection systems together with steam generator (SG) feedwater supply are considered, thus calling for adequate accident management actions and timely implementation of alternative emergency cooling procedures to prevent core meltdown. The presented analysis evaluates the capability of the applied TRACE model of the PKL facility to correctly capture the sequences of events in the different SBO scenarios, namely the SBO tests H2.1, H2.2 run 1 and H2.2 run 2, including symmetric or asymmetric secondary side depressurization, primary side depressurization, accumulator (ACC) injection in the cold legs and secondary side feeding with mobile pump and/or primary side emergency core coolant injection from the fuel pool cooling pump. This study is focused specifically on the prediction of the core exit temperature, which drives the execution of the most relevant accident management actions. This work presents, in particular, the key improvements made to the TRACE model that helped to improve the code predictions, including the modeling of dynamical heat losses, the nodalization of SGs' heat exchanger tubes and the ACCs. Another relevant aspect of this work is to evaluate how well the model simulations of the three different scenarios qualitatively and quantitatively capture the trends and results exhibited by the actual experiments. For instance, how the number of SGs considered for secondary side depressurization affects the heat transfer from primary side; how the discharge capacity of the pressurizer relief valve affects the dynamics of the transient; how ACC initial pressure and nitrogen release affect the grace time between ACC injection and subsequent core heat up; and how well the alternative feeding modes of the secondary and/or primary side with mobile injection pumps affect core quenching and ensure stable long-term core cooling under controlled boiling conditions.

Indefinite sustainability of passive residual heat removal system of small modular reactor using dry air cooling tower

  • Na, Min Wook;Shin, Doyoung;Park, Jae Hyung;Lee, Jeong Ik;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • 제52권5호
    • /
    • pp.964-974
    • /
    • 2020
  • The small modular reactors (SMRs) of the integrated pressurized water reactor (IPWR) type have been widely developed owing to their enhanced safety features. The SMR-IPWR adopts passive residual heat removal system (PRHRS) to extract residual heat from the core. Because the PRHRS removes the residual heat using the latent heat of the water stored in the emergency cooldown tank, the PRHRS gradually loses its cooling capacity after the stored water is depleted. A quick restoration of the power supply is expected infeasible under station blackout accident condition, so an advanced PRHRS is needed to ensure an extended grace period. In this study, an advanced design is proposed to indirectly incorporate a dry air cooling tower to the PRHRS through an intermediate loop called indefinite PRHRS. The feasibility of the indefinite PRHRS was assessed through a long-term transient simulation using the MARS-KS code. The indefinite PRHRS is expected to remove the residual heat without depleting the stored water. The effect of the environmental temperature on the indefinite PRHRS was confirmed by parametric analysis using comparative simulations with different environmental temperatures.

Development of MURCC code for the efficient multi-unit level 3 probabilistic safety assessment

  • Jung, Woo Sik;Lee, Hye Rin;Kim, Jae-Ryang;Lee, Gee Man
    • Nuclear Engineering and Technology
    • /
    • 제52권10호
    • /
    • pp.2221-2229
    • /
    • 2020
  • After the Fukushima Daiichi nuclear power plant (NPP) accident, level 3 probabilistic safety assessment (PSA) has emerged as an important task in order to assess the risk level of the multi-unit NPPs in a single nuclear site. Accurate calculation of the radionuclide concentrations and exposure doses to the public is required if a nuclear site has multi-unit NPPs and large number of people live near NPPs. So, there has been a great need to develop a new method or procedure for the fast and accurate offsite consequence calculation for the multi-unit NPP accident analysis. Since the multi-unit level 3 PSA is being currently performed assuming that all the NPPs are located at the same position such as a center of mass (COM) or base NPP position, radionuclide concentrations or exposure doses near NPPs can be drastically distorted depending on the locations, multi-unit NPP alignment, and the wind direction. In order to overcome this disadvantage of the COM method, the idea of a new multiple location (ML) method was proposed and implemented into a new tool MURCC (multi-unit radiological consequence calculator). Furthermore, the MURCC code was further improved for the multi-unit level 3 PSA that has the arbitrary number of multi-unit NPPs. The objectives of this study are to (1) qualitatively and quantitatively compare COM and ML methods, and (2) demonstrate the strength and efficiency of the ML method. The strength of the ML method was demonstrated by the applications to the multi-unit long-term station blackout (LTSBO) accidents at the four-unit Vogtle NPPs. Thus, it is strongly recommended that this ML method be employed for the offsite consequence analysis of the multi-unit NPP accidents.