• Title/Summary/Keyword: Long-term scenarios

Search Result 233, Processing Time 0.025 seconds

Modeling the Effect of a Climate Extreme on Maize Production in the USA and Its Related Effects on Food Security in the Developing World (미국 Corn Belt 폭염이 개발도상국의 식량안보에 미치는 영향 평가)

  • Chung, Uran
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2014.10a
    • /
    • pp.1-24
    • /
    • 2014
  • This study uses geo-spatial crop modeling to quantify the biophysical impact of weather extremes. More specifically, the study analyzes the weather extreme which affected maize production in the USA in 2012; it also estimates the effect of a similar weather extreme in 2050, using future climate scenarios. The secondary impact of the weather extreme on food security in the developing world is also assessed using trend analysis. Many studies have reported on the significant reduction in maize production in the USA due to the extreme weather event (combined heat wave and drought) that occurred in 2012. However, most of these studies focused on yield and did not assess the potential effect of weather extremes on food prices and security. The overall goal of this study was to use geo-spatial crop modeling and trend analysis to quantify the impact of weather extremes on both yield and, followed food security in the developing world. We used historical weather data for severe extreme events that have occurred in the USA. The data were obtained from the National Climatic Data Center (NCDC) of the National Oceanic and Atmospheric Administration (NOAA). In addition we used five climate scenarios: the baseline climate which is typical of the late 20th century (2000s) and four future climate scenarios which involve a combination of two emission scenarios (A1B and B1) and two global circulation models (CSIRO-Mk3.0 and MIROC 3.2). DSSAT 4.5 was combined with GRASS GIS for geo-spatial crop modeling. Simulated maize grain yield across all affected regions in the USA indicates that average grain yield across the USA Corn Belt would decrease by 29% when the weather extremes occur using the baseline climate. If the weather extreme were to occur under the A1B emission scenario in the 2050s, average grain yields would decrease by 38% and 57%, under the CSIRO-Mk3.0 and MIROC 3.2 global climate models, respectively. The weather extremes that occurred in the USA in 2012 resulted in a sharp increase in the world maize price. In addition, it likely played a role in the reduction in world maize consumption and trade in 2012/13, compared to 2011/12. The most vulnerable countries to the weather extremes are poor countries with high maize import dependency ratios including those countries in the Caribbean, northern Africa and western Asia. Other vulnerable countries include low-income countries with low import dependency ratios but which cannot afford highly-priced maize. The study also highlighted the pathways through which a weather extreme would affect food security, were it to occur in 2050 under climate change. Some of the policies which could help vulnerable countries counter the negative effects of weather extremes consist of social protection and safety net programs. Medium- to long-term adaptation strategies include increasing world food reserves to a level where they can be used to cover the production losses brought by weather extremes.

  • PDF

Predicting the Effects of Agriculture Non-point Sources Best Management Practices (BMPs) on the Stream Water Quality using HSPF (HSPF를 이용한 농업비점오염원 최적관리방안에 따른 수질개선효과 예측)

  • Kyoung-Seok Lee;Dong Hoon Lee;Youngmi Ahn;Joo-Hyon Kang
    • Journal of Wetlands Research
    • /
    • v.25 no.2
    • /
    • pp.99-110
    • /
    • 2023
  • Non-point source (NP) pollutants in an agricultural landuse are discharged from a large area compared to those in other land uses, and thus effective source control measures are needed. To develop appropriate control measures, it is necessary to quantify discharge load of each source and evaluate the degree of water quality improvement by implementing different options of the control measures. This study used Hydrological Simulation Program-FORTRAN (HSPF) to quantify pollutant discharge loads from different sources and effects of different control measures on water quality improvements, thereby supporting decision making in developing appropirate pollutant control strategies. The study area is the Gyeseong river watershed in Changnyeong county, Gyeongsangnam-do, with agricultural areas occupying the largest proportion (26.13%) of the total area except for the forest area. The main pollutant sources include chemical and liquid fertilizers for agricultural activities, and manure produced from small scale livestock facilities and applied to agriculture lands or stacked near the facilities. Source loads of chemical fertilizers, liquid fertilizers and livestock manure of small scale livestock facilities, and point sources such as municipal wastewater treatment plants (WWTPs), community WWTPs, private sewage treament plants were considered in the HSPF model setup. Especially, NITR and PHOS modules were used to simulate detailed fate and transport processes including vegitation uptake, nutrient deposition, adsorption/desorption, and loss by deep percolation. The HSPF model was calibrated and validated based on the observed data from 2015 to 2020 at the outlet of the watershed. The calibrated model showed reasonably good performance in simulating the flow and water quality. Five Pollutants control scenarios were established from three sectors: agriculture pollution management (drainge outlet control, and replacement of controlled release fertilizers), livestock pollution management (liquid fertilizer reduction, and 'manure management of small scale livestock facilities) and private STP management. Each pollutant control measure was further divided into short-term, mid-term, and long-term scenarios based on the potential achievement period. The simulation results showed that the most effective control measure is the replacement of controlled release fertilizers followed by the drainge outlet control and the manure management of small scale livestock facilities. Furthermore, the simulation showed that application of all the control measures in the entire watershed can decrease the annual TN and TP loads at the outlet by 40.6% and 41.1%, respectively, and the annual average concentrations of TN and TP at the outlet by 35.1% and 29.2%, respectively. This study supports decision makers in priotizing different pollutant control measures based on their predicted performance on the water quality improvements in an agriculturally dominated watershed.

A Study on Advanced Seafarers' Training for Improving Abilities of Officers in Charge of a Navigational Watch who Handle Navigational Equipment: To Focus on the ECDIS (항해사의 항해기기 취급 능력 향상을 위한 해기 교육 개선에 대한 연구: ECDIS를 중심으로)

  • LEE, Bo-Kyeong;KIM, Dae-Hae;LEE, Sang-Do;CHO, Ik-Soon
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.2
    • /
    • pp.323-335
    • /
    • 2016
  • The main reason of marine casualties is the human error in respect of ship's operation. The human error of officers in charge of a navigational watch is related to their abilities to handle of navigational equipment. Navigational devices play a key role to help officers decide what to do for safe navigation. Thus, the abilities to handle of navigational equipment mean not only operation of devices but also entire understanding of the system such as interpretation of information obtained from devices, appropriate use of information considering navigational circumstance. Qualification of seafarers is in accordance with STCW and detailed training courses for their qualification are provided by IMO model course series. Recently, ships engaged on international voyages shall be fitted with an ECDIS not later than the first survey on or after 1 July 2018. As increasing use of ECDIS on ships, marine casualties related to ECDIS are on the rise. The primary causes of the accidents are lacking understanding of ECDIS system, wrong presentation of information on display, wrong safety setting by seafarers who use ECDIS, using small-scale chart and missing charts update. As a result of these primary causes, some problems like wrong route planning and use of limited or omitted information occur. It could be happening by inappropriate seafarers' training which is not sufficient to support improving abilities of officers to handle navigational equipment. For efficient training, it is need to develop training courses. Applying full mission simulation system to seafarers' training courses with case studies and best practices which are well-constructed scenarios based on true marine casualties can increase the effect of training. To use the simulation system, it is possible that seafarers are trained under condition that closely resemble real situation. It should be considered that IMO model course be revised depending on the level of seafarers also. It could be helpful for increasing seafarers' abilities of equipment operation in place of accumulation of experience spending much time. In the short term, effort of training courses improvement for seafarers is needed and long term, it should be tried to provide stable system and services relate to ECDIS.

A Research Program for Modeling Strategic Aspects of International Container Port Competition

  • Anderson, Christopher M.;Luo, Meifeng;Chang, Young-Tae;Lee, Tae-Woo;Grigalunas, Thomas A.
    • Proceedings of the Korea Port Economic Association Conference
    • /
    • 2006.08a
    • /
    • pp.1-12
    • /
    • 2006
  • As national economies globalize, demand for intercontinental container shipping services is growing rapidly, providing a potential economic boon for the countries and communities that provide port services. On the promise of profits, many governments are investing heavily in port infrastructure, leading to a possible glut in port capacity, driving down prices for port services and eliminating profits as ports compete for business. Further, existing ports are making strategic investments to protect their market share, increasing the chance new ports will be overcapitalized and unprofitable. Governments and port researchers need a tool for understanding how local competition in their region will affect demand for port services at their location, and thus better assess the profitability of a prospective port. We propose to develop such a tool by extending our existing simulation model of global container traffic to incorporate demand-side shipper preferences and supply-side strategic responses by incumbent ports to changes in the global port network, including building new ports, scaling up existing ports, and unexpected port closures. We will estimate shipper preferences over routes, port attributes and port services based on US and international shipping data, and redesign the simulation model to maximize the shipper's revealed preference functions rather than simply minimize costs. As demand shifts, competing ports will adjust their pricing (short term) and infrastructure (long term) to remain competitive or defend market share, a reaction we will capture with a game theoretic model of local monopoly that will predict changes in port characteristics. The model's hypotheses will be tested in a controlled laboratory experiment tailored to local port competition in Asia, which will also serve to demonstrate the subtle game theoretic concepts of imperfect competition to a policy and industry audience. We will apply the simulation model to analyze changes in global container traffic in three scenarios: addition of a new large port in the US, extended closure of an existing large port in the US, and cooperative and competitive port infrastructure development among Korean partner countries in Asia.

  • PDF

Analysis of effects of drought on water quality using HSPF and QUAL-MEV (HSPF 및 QUAL-MEV를 이용한 가뭄이 수질에 미치는 영향 분석)

  • Lee, Sangung;Jo, Bugeon;Kim, Young Do;Lee, Joo-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.6
    • /
    • pp.393-402
    • /
    • 2023
  • Drought, which has been increasing in frequency and magnitude due to recent abnormal weather events, poses severe challenges in various sectors. To address this issue, it is important to develop technologies for drought monitoring, forecasting, and response in order to implement effective measures and safeguard the ecological health of aquatic systems during water scarcity caused by drought. This study aimed to predict water quality fluctuations during drought periods by integrating the watershed model HSPF and the water quality model QUAL-MEV. The researchers examined the SPI and RCP 4.5 scenarios, and analyzed water quality changes based on flow rates by simulating them using the HSPF and QUAL-MEV models. The study found a strong correlation between water flow and water quality during the low flow. However, the relationship between precipitation and water quality was deemed insignificant. Moreover, the flow rate and SPI6 exhibited different trends. It was observed that the relationship with the mid- to long-term drought index was not significant when predicting changes in water quality influenced by drought. Therefore, to accurately assess the impact of drought on water quality, it is necessary to employ a short-term drought index and develop an evaluation method that considers fluctuations in flow.

Estimation of Long-term Water Demand by Principal Component and Cluster Analysis and Practical Application (주성분분석과 군집분석을 이용한 장기 물수요예측과 활용)

  • Koo, Ja-Yong;Yu, Myung-Jin;Kim, Shin-Geol;Shim, Mi-Hee;Akira, Koizumi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.870-876
    • /
    • 2005
  • The multiple regression models which have two factors(population and commercial area) have been used to forecast the water demand in the future. But, the coefficient of population had a negative value because proper regional classification wasn't performed, and it is not reasonable because the population must be a positive factor. So, the regional classification was performed by principal component and cluster analysis to solve the problem. 6 regional characters were transformed into 4 principal components, and the areas were divided into two groups according to cluster analysis which had 4 principal components. The new regression models were made by each group, and the problem was solved. And, the future water demands were estimated by three scenarios(Active, moderate, and passive one). The increase of water demand ore $89.034\;m^3/day$ in active plat $49,077\;m^3/day$ in moderate plan, and $19,996\;m^3/day$ in passive plan. The water supply ability as scenarios is enough in water treatment plant, however, 2 reservoirs among 4 reservoirs don't have enough retention time in all scenarios.

Real-time CRM Strategy of Big Data and Smart Offering System: KB Kookmin Card Case (KB국민카드의 빅데이터를 활용한 실시간 CRM 전략: 스마트 오퍼링 시스템)

  • Choi, Jaewon;Sohn, Bongjin;Lim, Hyuna
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.1-23
    • /
    • 2019
  • Big data refers to data that is difficult to store, manage, and analyze by existing software. As the lifestyle changes of consumers increase the size and types of needs that consumers desire, they are investing a lot of time and money to understand the needs of consumers. Companies in various industries utilize Big Data to improve their products and services to meet their needs, analyze unstructured data, and respond to real-time responses to products and services. The financial industry operates a decision support system that uses financial data to develop financial products and manage customer risks. The use of big data by financial institutions can effectively create added value of the value chain, and it is possible to develop a more advanced customer relationship management strategy. Financial institutions can utilize the purchase data and unstructured data generated by the credit card, and it becomes possible to confirm and satisfy the customer's desire. CRM has a granular process that can be measured in real time as it grows with information knowledge systems. With the development of information service and CRM, the platform has change and it has become possible to meet consumer needs in various environments. Recently, as the needs of consumers have diversified, more companies are providing systematic marketing services using data mining and advanced CRM (Customer Relationship Management) techniques. KB Kookmin Card, which started as a credit card business in 1980, introduced early stabilization of processes and computer systems, and actively participated in introducing new technologies and systems. In 2011, the bank and credit card companies separated, leading the 'Hye-dam Card' and 'One Card' markets, which were deviated from the existing concept. In 2017, the total use of domestic credit cards and check cards grew by 5.6% year-on-year to 886 trillion won. In 2018, we received a long-term rating of AA + as a result of our credit card evaluation. We confirmed that our credit rating was at the top of the list through effective marketing strategies and services. At present, Kookmin Card emphasizes strategies to meet the individual needs of customers and to maximize the lifetime value of consumers by utilizing payment data of customers. KB Kookmin Card combines internal and external big data and conducts marketing in real time or builds a system for monitoring. KB Kookmin Card has built a marketing system that detects realtime behavior using big data such as visiting the homepage and purchasing history by using the customer card information. It is designed to enable customers to capture action events in real time and execute marketing by utilizing the stores, locations, amounts, usage pattern, etc. of the card transactions. We have created more than 280 different scenarios based on the customer's life cycle and are conducting marketing plans to accommodate various customer groups in real time. We operate a smart offering system, which is a highly efficient marketing management system that detects customers' card usage, customer behavior, and location information in real time, and provides further refinement services by combining with various apps. This study aims to identify the traditional CRM to the current CRM strategy through the process of changing the CRM strategy. Finally, I will confirm the current CRM strategy through KB Kookmin card's big data utilization strategy and marketing activities and propose a marketing plan for KB Kookmin card's future CRM strategy. KB Kookmin Card should invest in securing ICT technology and human resources, which are becoming more sophisticated for the success and continuous growth of smart offering system. It is necessary to establish a strategy for securing profit from a long-term perspective and systematically proceed. Especially, in the current situation where privacy violation and personal information leakage issues are being addressed, efforts should be made to induce customers' recognition of marketing using customer information and to form corporate image emphasizing security.

Impact of Climate Change on Habitat of the Rhynchocypris Kumgangensis in Pyungchang River (기후변화가 평창강 금강모치의 생태서식 환경에 미치는 영향 평가)

  • Kim, Soojun;Noh, Hui Seong;Hong, Seung Jin;Kwak, Jae Won;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.15 no.2
    • /
    • pp.271-280
    • /
    • 2013
  • This study tried to analyze the impact of climate change on ecological habitat. In this regard, the Rhynchocypris Kumgangensis was selected among the CBIS(Climate-sensitive Biologocal Indicator Species) suggested by the Ministry of Environment. And ecological habitat and restrictive conditions for its survival was surveyed. Future runoff and water quality in the upstream of Pyungchang river were simulated by appling climate change scenarios to SWAT model which is able to simulate water quality. The estimated results explained characteristics on the increase of runoff, BOD, and water temperature and the decrease of DO in the future. The restrictive condition on ecological habitat of the Rhynchocypris Kumgangensis was used water quality during the April to May spawning season since BOD and DO were satisfactory as the first grade of water criteria in the estimated result of future water quality. As a result, it was analyzed that habitat of the Rhynchocypris Kumgangensis in the present was possible about 50~60% of the river. But the habitat would be decreased gradually in the future and would be possible in a very small part of the river in the long term.

Effect of Selective Withdrawal on the Control of Turbidity Flow and Its Water Quality Impact in Deacheong Reservoir (선택취수에 따른 대청호 탁수 조절효과 및 수질영향 분석)

  • Jung, Yong-Rak;Liu, Huan;Kim, Yu-Kyung;Ye, Lyeong;Chung, Se-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.8
    • /
    • pp.601-615
    • /
    • 2007
  • A selective withdrawal method has been widely used to control the quality of water released from a stratified reservoir and to improve downstream ecosystem habitats. Recently, several existing reservoir withdrawal facilities have been modified to accommodate multi-level water intake capabilities in order to adapt the impact of long-term discharge of high turbidity flow. The purpose of this study was to assess the effect of selective withdrawal method on the control of downstream turbidity and its impact on water quality in Daecheong Reservoir. A laterally integrated two-dimensional hydrodynamic and eutrophication model, which was calibrated and validated in the previous studies, was applied to simulate the temporal variations of outflow turbidity with various hypothetical selective withdrawal scenarios. In addition, their impacts on the algal growth as well as water quality constituents were analyzed in three different spatial domains of the reservoir The results showed that the costly selective withdrawal method would provide very limited benefits for downstream turbidity control during two years of consecutive simulations for 2004-2005. In particular, an excessive withdrawal from the epilimnion zone for supplying upper layer clean water resulted in movement of turbidity plume that contained high phosphorus concentrations upward photic zone, and in turn increased algal growth in the lacustrine zone.

A Study on the Effects of Urban Public Transportation Retrofitting for Sustainability (지속가능성을 위한 도시 대중교통 레트로핏(Retrofitting) 효과분석)

  • KIM, Seunghyun;NA, Sungyoung;KIM, Jooyoung;LEE, Seungjae
    • Journal of Korean Society of Transportation
    • /
    • v.36 no.1
    • /
    • pp.23-37
    • /
    • 2018
  • In recent years, it is very difficult to construct and expand new infrastructures in a city center because of long-term low growth and lack of space due to urban overcrowding. So, there is a need to study a variety of Retrofitting techniques and urban applications that can lead to sustainable development while efficiently utilizing existing facilities. 'Retrofit' means a sustainable urban retrofitting as a directed alteration of the structures, formations and systems of existing facilities to improve energy, water and waste efficiencies. In this study, we applied a hierarchical network design technique that can reflect the structural hierarchy of a city to study how to retrofit public transportation routes in Seoul. The hierarchical network design means dividing the hierarchy according to the functions of hubs and connecting different hierarchies to form a hierarchical network. As a result of comparing the application results of various retrofitting scenarios of public transport, the differences of daily PKT and PHT by about 2.6~3.2% less than before the improvement address that the convenience of passengers is increased. Therefore, it is expected that if the route planning is established according to the proposed method, it will increase the number of passengers and the operational efficiency by the improved convenience of public transit passengers.