• Title/Summary/Keyword: Long-term monitoring

Search Result 1,354, Processing Time 0.03 seconds

Sea Water Intrusion in the Coastal Area of Cheju Volcanic Island, Korea (제주도(濟州島) 임해지역(臨海地域)에서의 해수침입(海水侵入))

  • Choi, Soon Hak;Kim, Young Ki;Lee, Dong Young
    • Economic and Environmental Geology
    • /
    • v.24 no.3
    • /
    • pp.319-327
    • /
    • 1991
  • Cheju is the biggest island in Korean peninsula, consisted entirely of volcanic rocks and pyroclastic sediments. The topography is characterized by wide basalt plain in the low altitude but at the center of island, basalt volcano rises 1,950m above sea-level. Surface drainage is very poor, therefore water supply has been dependent on ground water and natural springs. There are about 1,650 production wells and most of them yield $1,000{\sim}2,000mm^3/day$. According to increase of ground water use, saline water is intruded in the low altitude of coastal area. Specially in the eastern coastal area, the topography is extensively flat and the level of ground water is very close to sea-level, at which overuse of ground water has brought saline intrusion up to maximum 6km far from the coast. Hydrochemical monitoring on this salt water intrusion is now undertaken on long term base.

  • PDF

A Study on Estimate of Sediment Yield Using Tank Model in Oship River Mouth of East Coast (Tank 모형을 이용한 동해안 오십천 하구의 유사량 평가에 관한 연구)

  • Kang, Sank-Hyeok;Ok, Yong-Sik;Kim, Sang-Ryul;Ji, Jeong-Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.268-274
    • /
    • 2011
  • BACKGROUND: A large scale of sediment load delivered from watershed causes substantial waterway damages and water quality degradation. Controlling sediment loading requires the knowledge of the soil erosion and sedimentation. The various factors such as watershed size, slope, climate, land use may affect sediment delivery processes. Traditionally sediment delivery ratio prediction equations have been developed by relating watershed characteristics to measured sediment yield divided by predicted gross erosion. However, sediment prediction equations have been developed for only a few regions because of limited sediment data. Besides, little research has been done on the prediction of sediment delivery ratio for asia monsoon period in mountainous watershed. METHODS AND RESULTS: In this study Tank model was expanded and applied for estimating sediment yield to Oship River of east coast. The rainfall-runoff in 2006 was verified using the Tank model and we derived good result between observed and calculated discharge in 2009 at the same conditions. In relation to sediment yield, the sediment delivery rate of 2006 was very high than 2009 regardless of methods for estimating sediment load. It was thought to be affected by heavy rainfall due to the typhoon. CONCLUSION(s): For estimating sediment volume from watershed, long-term monitoring data on discharge and sediment is needed. This model will be able to apply to predict discharge and sediment yield simultaneously in ungauged area. This approach is more effective and less expensive method than the traditional method which needs a lot of data collection.

Estimation of Particulate Matter and Ammonia Emission Factors for Mechanically-Ventilated Pig Houses (강제환기식 양돈시설의 암모니아 및 미세먼지 배출계수 산정)

  • Park, Jinseon;Jeong, Hanna;Hong, Se-Woon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.6
    • /
    • pp.33-42
    • /
    • 2020
  • Emission factors for ammonia and particulate matters (PMs) from livestock buildings are of increasing importance in view of the environmental protection. While the existing emission factors were determined based on the emission inventory of other countries, in situ measurement of emission factors is required to construct an accurate emission inventory for Korea. This study is to report measurements of ammonia and PMs emissions from mechanically-ventilated pig houses, which are common types of pig barns in Korea. Ventilation rates and concentrations of ammonia and PMs were measured at the ventilation outlets of a weaner unit, a growing pig unit and a fattening pig unit to calculated the emission factors. The PMs emission was characterized with different aerodynamic diameters (PM2.5, PM10, and total suspended particulates (TSP)). The measured ammonia emission factors for weaners, growing pigs and fattening pigs were 0.225, 0.869 and 1.679 kg animal-1 yr-1, respectively, showing linear increase with pigs' age. The PMs emission factors for three growing stages were 0.023, 0.237 and 0.241 kg animal-1 yr-1, respectively for TSP, 0.017, 0.072 and 0.223 kg animal-1 yr-1, respectively for PM10, and 0.011, 0.016 and 0.151 kg animal-1 yr-1, respectively for PM2.5. PMs emissions were increased with pigs' age due to increasing feed supply and animal movement. The measured emission factors were smaller than those of the existing emission inventory indicating that the existing ones overestimate the emissions from pig buildings and also suggesting that long-term in situ monitoring at various livestock buildings is required to construct the accurate emission inventory.

Trend Analysis of Water Quality in Dongjin River Watershed (동진강 유역의 수질 경향 분석에 관한 연구)

  • Lee, Hye-Won;Park, Seok-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.1
    • /
    • pp.39-47
    • /
    • 2009
  • Spatial and temporal analysis of water quality was performed for eleven monitoring stations in Dongjin River watershed in order to determine the trends of monthly water quality. The monthly water quality data of biochemical oxygen demand (BOD), total nitrogen (TN) and total phosphorus (TP) during $1995{\sim}2004$, were analyzed utilizing Seasonal Mann-Kendall test, LOWESS and three-dimensional graphic approaches. The results indicated that BOD and TN concentrations had the downward trend, but TP showed the upward trend, especially in Gobucheon. This numerical and graphic analysis is the useful tool to analyze the long-term trend of water quality in a large river system.

Forest Structure of Jisimdo Hallyeohaesang National Park (한려해상국립공원 지심도의 식생구조)

  • Ahn, Hyun-Chul;Kim, Jeong-Woon;Choo, Gab-Chul;Shin, Hyun-Soo;Park, Sam-Bong;An, Jong-Bin;Park, Jeong-Geun;Ngondya, Issakwisa Bernard
    • Journal of agriculture & life science
    • /
    • v.46 no.3
    • /
    • pp.27-36
    • /
    • 2012
  • The purpose of this study was to investigate the structure of the vegetation on the trail of Hallyeo Marine & Coastal National Park. Twenty six $10{\times}10m$ plots were established along the Jisimdo trail. The vascular plants were surveyed from March 2011 to October 2011. Camellia japonica was a major woody species in the study area, while Pinus thunbergii and Zanthoxylum ailanthoides were co-dominant tree species. There were positive correlations between Distylium racemosum and Ligustrum japonicum var. japonicum; Callicarpa japonica var. luxurians and Eurya japonical; Actinodaphne lancifolia and Cinnamomum japonicum; A. lancifolia and Machilus japonica. Positive correlations were found between A. lancifolia and P. thunbergii; Z. ailanthoides and C. japonicum. Species diversity (H') was ranged from 0.51907 to 1.0217, and was relatively low compared to those of same national parks. 10 populations of Milletia japonica which are rare and endemic species, were recorded from the list of rare and endemic species of the Ministry of Environment near by ammo dumps, this study recommend the long term habitat monitoring of the species.

The Distribution of Total Ozone Amounts and Intercomparison of their characteristics Derived from the TOVS Observations over the Korean Peninsula (TOVS로 부터 도출한 한반도 부근의 전오존량 분포 및 그 특성 비교)

  • 정효상;주상원
    • Korean Journal of Remote Sensing
    • /
    • v.11 no.3
    • /
    • pp.23-31
    • /
    • 1995
  • The International TOVS(TIROS Operational Vertical Sounders) Process Package(ITPP-VI), which has been installed at Korea Meteorological Administration(KMA), is only for a global usage to need a surface data to generate atmospheric soundings and total ozone amount. If the initial input process in the ITTP-VI is not modified, it takes climatic surface data for producing sounding data and total ozone amount in general. KMA is trying to improve the quality of TOVS total ozone amount using real-time synoptoc observation in various ways instead of climatological data because this retrieved data in the new scheme for total ozone presently used at the KMA may critically provide to analyze the long-term trend of ozone structure over the Korean peninsula. Two cases in this study show that TOVS retrieved total ozone amounts used by synoptic surface observations can delineate more detailed ozone structures rather than those used by climate surface data. The distribution of TOVS retrieved ozone amount fields with the synoptic surface analyzed data(TOVS-GPV) show more in detail relatively than those with the climate data(TOVS-CLIMAT) as expected. In addition, the collocated inter-comparisons of TOVS-GPV with TOVS-CLIMAT, TOMS observations and Dobsometer observations are performed statistically. TOVS-GPV fields with TOMS observations show smaller bias relatively than TOVS-CLIMAT and also reduce the differences.

자연전위의 효율적 측정을 위한 전극의 잡음요소 분석

  • Song, Seong-Ho;Gwon, Byeong-Du
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.1
    • /
    • pp.9-18
    • /
    • 2002
  • We performed a long-term monitoring of self-potential(SP) using the Cu-CuSO₄non-polarizable electrode and copper-clad electrodes(CCE) in a test site in order to analyze the effects of surrounding environmental noises such as temperature, rainfall and soil moisture content on the electrodes. Analysis of the temperature dependence of the non-polarizable electrodes showed that is temperature coefficient was about +0.5 mV/°Fwhen its end was exposed to atmosphere while it was less than +0.5 mV/℃ when submerged into the subsurface, which reflects that there exists an 8 to 11 hour lag between temperatures at the depth of 15 cm and atmosphere. CCE was independent of atmospheric temperature in subsurface but showed temperature coefficient of 1.0 mV/℃ when exposed to atmosphere. Drifts of 1 to 2 mV recorded with the non-polarizable electrode directly related to the soil moisture content when it was buried in subsurface. Drift with CCE also showed similar trend to the soil moisture content, and 5 mV drift was recorded according to 5% of daily variation. The soil moisture content had strong effects on the measurement with CCE in rainfall since the flow potential is generated on the surface of the electrode.

  • PDF

Comparison of Annual Soil Loss using USLE and Hourly Soil Erosion Evaluation System (USLE모형과 시강우를 고려한 토양유실 평가 시스템을 이용한 연간 토양유실량 비교 분석)

  • Kum, Dong-Hyuk;Ryu, Ji-Chul;Kang, Hyun-Woo;Jang, Chun-Hwa;Shin, Min-Hwan;Shin, Dong-Shuk;Choi, Joong-Dae;Lim, Kyoung-Jae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.991-997
    • /
    • 2011
  • Soil erosion and sediment has been known as one of pollutants causing water quality degradation in water bodies. With global warming issues worldwide, various soil erosion studies have been performed. Although on-site monitoring of sediment loss would be an ideal method to evaluate soil erosion condition, modeling approaches have been utilized to estimate soil erosion and to evaluate various best management practices on soil erosion reduction. Although the USLE has been used in soil erosion estimation for the last 40 years, the USLE model has limitations in estimating event-based soil erosion reflecting rainfall intensity and rainfall duration for long-term period. Thus, the calibrated model, capable of simulating soil erosion using hourly rainfall data, was utilized in this study to evaluate the effects of rainfall amount and rainfall intensity on soil erosion. It was found that USLE soil erosion value is $3.06ton\;ha^{-1}\;yr^{-1}$, while soil erosion values from 2006~2010 were $2.469ton\;ha^{-1}\;yr^{-1}$, $0.882ton\;ha^{-1}\;yr^{-1}$, $1.489ton\;ha^{-1}\;yr^{-1}$, $2.158ton\;ha^{-1}\;yr^{-1}$, $1.602ton\;ha^{-1}\;yr^{-1}$, respectively. Especially, soil erosion from single storm event for 2008-2010 would be responsible for 30% or more of annual soil loss. As shown in this study, hourly soil erosion estimation system would provide more detailed output from the study area. In addition, the effects of rainfall intensity on soil erosion could be evaluated with this system.

Annual Distribution of Atmospheric Ammonia Concentration in Saemangum Reclaimed Land Area (새만금 간척지 지역 공기 중 암모니아 농도의 연간 분포)

  • Hong, Sung-Chang;Kim, Min-Wook;Kim, Jin-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.4
    • /
    • pp.330-334
    • /
    • 2021
  • BACKGROUND: More recently, it has been shown that atmospheric ammonia (NH3) plays a primary role in the formation of secondary particulate matter by reacting with the acidic species, e.g. SO2, NOx, to form PM2.5 aerosols in the atmosphere. The Jeonbuk region is an area with high concentration of particulate matter. Due to environmental changes in the Saemangeum reclaimed land with an area of 219 km2, it is necessary to evaluate the impact of the particulate matter and atmospheric ammonia in the Jeonbuk region. METHODS AND RESULTS: Atmospheric ammonia concentrations were measured from June 2020 to May 2021 using a passive sampler and CRDS analyzer. Seasonal and annual atmospheric ammonia concentration measured using passive sampler was significantly lower in Jangjado (background concentration), and the concentration ranged from 11.4 ㎍/m3 to 18.2 ㎍/m3. Atmospheric ammonia concentrations in Buan, Gimje, Gunsan, and Wanju regions did not show a significant difference, although there was a slight seasonal difference. The maximum atmospheric ammonia concentration measured using the CRDS analyzer installed in the IAMS near the Saemangeum reclaimed land was 51.5 ㎍/m3 in autumn, 48.0 ㎍/m3 in summer, 37.6 ㎍/m3 in winter, and 32.7 ㎍/m3 in spring. The minimum concentration was 4.9 ㎍/m3 in spring, 4.2 ㎍/m3 in summer, and 3.5 ㎍/m3 in autumn and winter. The annual average concentration was 14.6 ㎍/m3. CONCLUSION(S): Long term monitoring of atmospheric ammonia in agricultural areas is required to evaluate the formation of fine particulate matter and its impact on the environment. In addition, continuous technology development is needed to reduce ammonia emitted from farmland.

A Study of Algal Succession and Community Structure on Artificial Reef at Yangyang-gun and Pohang-si, Korea (양양군과 포항 해역에 시설한 인공어초에서 진행된 해조천이와 군집에 관한 연구)

  • Lee, Hyeon Jin;Choi, Chang Geun
    • Journal of Marine Life Science
    • /
    • v.4 no.2
    • /
    • pp.81-85
    • /
    • 2019
  • This study was carried out to observe the changes of seaweed community in artificial reefs installed in September, 2016 in Namae-ri, Yangyang-gun, and Seokbyeong-ri, Pohangsi, Korea. Field surveys were conducted by SCUBA diving once a season in February, May, August, and November of 2017, and quantitative survey and qualitative survey were carried out in parallel. In this study, a total of 94 species, including 11 green algae, 15 brown algae and 68 red algae were appeared. 66 species (8 green algae, 9 brown algae, 49 red algae) and 65 species (7 green algae, 9 brown algae, 49 red algae) were collected and identified in Yangyang and Pohang. In dominant species, Yangyang was dominant species of Saccharina japonica and subdominant species of Ulva australis. Pohang dominated in order of Colpomenia sinuosa and Gelidium elegans. In both coastal areas, Ulva spp., Colpomenia sinuosa were grown at the early stage of reforestation, and perennial seaweeds such as Saccharina japonica, Ecklonia cava and Gelidium elegans were grown. In order to clarify the clustering relation through flora change, it is necessary to monitor the transition process until the seaweed community is stabilized by observing the long-term change through continuous monitoring.